

46

JIRAE, Vol. 4, No. 2, October 2019, 46-50 DOI: 10.9744/jirae.4.2.46-50

e-ISSN 2407-7259

Test Driven Development in OWOW’s Full-stack Web Development

Albert Pratomo1,2,a, Erik van der Schriek2,b, Thomas van der Veen3,c
1 Department of Informatics, Petra Christian University, Jl. Siwalankerto 121-131, Surabaya 60236, Indonesia

2 Information and Communication Technology, Fontys University of Applied Sciences, Eindhoven, the Netherlands
3 OWOW Agency, Eindhoven, the Netherlands

aalbertpratomo21@gmail.com, be.vanderschriek@fontys.nl, cthomas@owow.io

Abstract. OWOW is a digital agency which operates in the context of software development, design, and digital
marketing. One of the key services it provides is full-stack web development. OWOW separates its full-stack web
development into back-end and front-end. OWOW had done some automated testing in back-end, but none in
front-end. This was not ideal because the quality of web apps developed could not be easily and thoroughly ensured.
OWOW believes Test Driven Development (TDD) might be the solution for the situation. TDD is a software
development process where test code are written before the implementation code. Through this research, OWOW
would like to start applying TDD into its full-stack web development. Research had been done to investigate how
to apply TDD in OWOW’s current workflow. In the research, the TDD approach was defined. Afterwards, its
application on current back-end and front-end development was investigated. Furthermore, its relation to
Continuous Integration was explored. The research findings were then implemented on an ongoing web app project
called RentIt. This implementation had been delivered as a proof-of-concept application of TDD in OWOW’s full-
stack web development. It is concluded that OWOW had been introduced to apply TDD in its full-stack web
development.

Keywords: Test driven development, full-stack web development, laravel, Vue.js, continuous integration.

1. Introduction

The goal in Software Engineering is to create a good

quality software. Developers expect the software they build to

meet all requirements and have proper functionalities. Bugs

should be prevented as much as possible, or detected and fixed

as soon as possible.

Automated testing is invented to ensure softwares’ quality.

In simple terms, automated testing is writing code that can test

other code. This is especially helpful because the tests can be

run automatically by a computer, whenever it is specified to.

As automated testing practices matured, there emerged a

new software development workflow called Test Driven

Development (TDD). TDD is a workflow where software is

developed by writing test before the implementation code [1].

OWOW is a digital agency which operates in the context

of software development, design, and digital marketing. One of

its main products is web app, in which it does full-stack web

development.

OWOW would like to start applying TDD into its full-

stack web development. It believes doing so will increase the

web apps quality and decrease the time to fix bugs.

This paper documents the research process of investigating

how to apply TDD in OWOW’s context. Also, how the rese-

arch findings are implemented on an ongoing OWOW web

app project (RentIt), as a pilot case.

2. Background

2.1 Initial Situation

OWOW separates its full-stack web development into

back-end and front-end. Back-end is responsible for interacting

with database and providing Application Programming Inter-

face (API) endpoints. Front-end is responsible for interacting

with users and communicating with the API. Currently

OWOW uses Laravel (PHP) as its back-end framework and

Vue.js (Javascript) for the front-end side.

OWOW has done some automated testing in the back-end

development. It uses PHPUnit testing tool. Most of the tests

were written after implementation code, but some were written

before. In other words, OWOW has applied partial TDD on its

back-end development.

OWOW has not done any automated testing in its front-

end development. This means no automated tests to check user

interaction with the app, components behaviour, or communi-

cation with the API. If anything, a few manual tests are per-

formed by Project Manager to check new features which are

being developed.

2.2 Goal

The goal is to get OWOW start applying TDD into its full-

stack web development.

It is expected that as an outcome, OWOW knows how to

apply TDD into its full-stack web development. OWOW will

have its development environment set up for TDD and Conti-

nuous Integration (CI). OWOW will also have a TDD pilot

case implemented on an ongoing web app project called RentIt.

2.3 Approach

To achieve the goal, an approach has been made. It is

carried out in 2 major phases:

1. Research: Investigate on how to apply TDD into

OWOW’s full-stack web development.

2. Implementation: Apply research findings on an OWOW

web app project.

All the learnings from these 2 phases are then shared with

OWOW developers to introduce them to apply TDD in their

workflow.

Albert P. et al. / Test Driven Development in OWOW’s Full-stack Web Development / JIRAE, Vol. 4, No. 2, October 2019, pp. 46–50

 47

3. Research

3.1 Back-end

Back-end development is an aspect of full-stack develop-

ment which processes data and interacts with the database.

Back-end’s main responsibility is to provide data to the front-

end (which handles user interaction). This is generally done by

providing Application Programming Interface (API) for the

front-end to communicate with.

For the web app projects, OWOW’s back-end develop-

ment produces web API in the form of web services. Simply

put, the back-end provides a set of URLs as communication

endpoints for the front-end. The front-end would then use the

HTTP protocol to send request to the endpoint. The back-end

receives the request, processes it, and returns back a response.

OWOW uses Laravel as its back-end development frame-

work. The programming language is PHP and the database

management system is MySQL. Laravel follows Model-

View-Controller architecture pattern. The model defines

abstraction of data that is stored in database. The view renders

HTML pages that are the user interface. The controller handles

requests and responses from the client.

However, OWOW does not use Laravel’s view to render

HTML but instead handles UI in the front-end development. In

addition, OWOW implements a more complex back-end

architecture: The Manager and Repository design pattern.

Figure 1 below shows overview of the back-end architecture

pattern used.

Figure 1. Back-end Architecture Pattern

Testing Situation

Currently OWOW implements Feature and Unit Testing

in its back-end development. This is following the recommen-

dation by Laravel through their official documentation.

Feature testing is checking a specific functionality of an

app. In the case of back-end Laravel app, this mainly means

checking that the web API is working properly. This is done

through simulating HTTP request to the endpoint, and then

asserting the response or changes made to the database. In

doing this, several objects are being tested on how they behave

and interact with each other.

Unit testing is testing a very small, isolated portion of the

code. While feature testing tests several objects interacting with

each other, unit testing focuses only on one. In fact, it mostly

tests only a single function of the object at a time. This made

unit tests very fast to run and able to directly point a specific

part of the code when an error happens.

3.2 Front-end

Front-end development is an aspect of full-stack

development which manages the User Interface (UI). Front-

end’s main responsibility is to handle user interactions. It

receives user input and gives back output. In order to do that,

front-end needs to communicate with the back-end.
The communication with back-end is generally done by

sending request to API endpoints, receiving the response, and
then showing information to the user via a web browser. The
widely used technology for API communication are HTTP
requests. While the underlying technologies for the UI are
HTML, CSS, and Javascript (JS).

OWOW uses Vue.js as its front-end development frame-
work. Vue.js is a progressive Javascript framework focused on
the view layer, and designed to be easy to adopt and integrate
with other libraries. Figure 2 below shows overview of the
front-end architecture pattern used.

Figure 2. Front-end Architecture Pattern

Testing Types

Vue.js through their official guide and cookbook encou-
rages Unit Testing, specifically for Vue components. It is
described that this practice brings some benefits: extra docu-
mentation, less bugs, improved design, and easier refactoring.
Vue.js also mentions vue-test-utils as their official unit testing
library [2].

Edd Yerburgh is a Vue.js core team member and main
creator of vue-test-utils. Through his book “Testing Vue.js
Application”, Edd recommends Unit, Snapshot, and End-to-
end Testing for Vue.js development [1].

Vue through their documentation page provides plugins for
Unit and End-to-end Testing. For Unit Testing, it provides Jest
and Mocha. While for End-to-end Testing, it provides Cypress
and Nightwatch [2]. It can be inferred that Vue recommends
these 2 types of testing.

Thus far, 3 types of testing are recommended by Vue.js
authorities: Unit, Snapshot, and End-to-end Testing.

Unit testing is the process of running tests against the
smallest parts of an app. In a Vue.js app, components are the
units to test [1]. This is agreeable, because essentially a Vue.js
app is a combination of components interacting with each
other. In order to guarantee the app’s quality, its components
must be ensured to behave properly.

Snapshot testing is a method of unit testing that is focused
in the visual part of the component. It takes a snapshot of the
component’s HTML output and uses it as a comparison for
future outputs. This way, the developer is always informed
whenever there are changes to the component’s presentation
and can decide if the changes are intentional or accidental.

End-to-end testing is checking an application’s behaviour
by automating a browser to interact with the running
application [1]. In other words, it is automated manual testing.
When someone is manually testing an app, he opens the app,
clicks through some action, and checks if the app responds
correctly. End-to-end testing is the same, except a program, not
a human, interacts with the app.

Albert P. et al. / Test Driven Development in OWOW’s Full-stack Web Development / JIRAE, Vol. 4, No. 2, October 2019, pp. 46–50

 48

Testing Tools

Unit Testing

For unit testing, the tools needed are Vue utility library and
test runner. The main Vue utility library that is officially
recommended is vue-test-utils. It provides methods to mount
the component in isolation, mock the necessary inputs (props,
slots, data), and assert the outputs (rendered HTML, emitted
events).

There are currently no visible competitors of vue-test-utils
in terms of unit testing utilities for Vue.js development. It is
officially recommended by Vue.js and widely found across
testing tutorials on the Internet. For these reasons, vue-test-utils
will be used.

For the test runner, Vue.js official documentation stated to
have compared possible options and as a result recommended
Jest and Mocha [2]. These 2 runners are further investigated in
terms of feature, performance, and adoptability.

Jest vs Mocha Comparison

Jest is an open-source test runner developed by Facebook.
It was initially built for React.js, but has been extended to work
seamlessly with other Javascript frameworks, including Vue.js.
Mocha is also an open-source Javascript test runner. It is older
and more mature compared to Jest, but not backed by a big tech
company [3].

Feature

In terms of features, Jest comes with built-in mocking and
assertion abilities. It requires little configuration and supports
snapshot testing by default. On the other hand, Mocha does not
come with built-in mocking, assertion, or snapshotting abilities.
Instead, it allows developers flexibility to choose the libraries
they want to use (with more configuration). In other words, Jest
is more fully featured while Mocha is more flexible.

Performance

Performance test was done on both runners by conducting

5 runs of Btn.spec.js test file, which consists of 7 tests. The

result: Jest averagely requires 1.59s and Mocha requires 1.05s.

Mocha is averagely faster by 34%. The report can be seen in

Table 1 below.

Table 1. Jest vs Mocha Performance Test (Btn)

 #1 #2 #3 #4 #5 Avg Time Ratio

Jest 1.57s 1.64s 1.58s 1.57s 1.58s 1.59s 1
Mocha 1.04s 1.03s 1.07s 1.04s 1.06s 1.05s 0.66

Edd Yerburgh also did a similar experiment. He measured

time required for different amounts of tests [4]. Each amount is

run 10 times and the average time is calculated, as shown in

Table 3 below. The result: for a single test, Jest averagely

requires 0.0197s and Mocha 0.0090s. Mocha is averagely

faster by 55%. These 2 experiments reveal that Mocha has

faster performance than Jest.

Table 2. Jest vs Mocha Performance Test (Yerburgh)

 10 tests 100 tests 1000 tests 5000 tests Avg Time/test Time Ratio

Jest 2.44s 4.50s 21.84s 91.91s 0.0197s 1

Mocha 2.32s 3.07s 10.79s 38.97s 0.0090s 0.45

Adoptability

Adoptability plainly means the level of difficulty to adopt

the test runner. This factor is strongly related to setup process

and learning resources. Regarding setup proces s, Vue provides

plugins for both Jest and MochaUsing these plugins, both

runners can be setup easily into an existing Vue.js codebase.

In terms of learning resources, vue-test-utils provides

practical guide for Jest and Mocha. Both runners also have

extensive documentation and good quantity of Internet

tutorials. However, the main book used in this project, “Testing

Vue.js Application”, uses Jest. Additionally, Vue Testing

Handbook by Lachlan Miller also uses Jest [5]. For these

reasons, Jest has better adoptability than Mocha.

In conclusion, Jest has more features and better

adoptability, while Mocha has more flexibility and faster

performance. Jest is decided to be chosen, as it is more suitable

for OWOW’s current situation as a start-up agency.

Snapshot Testing

Jest, the chosen unit test runner, supports snapshot testing

by default. It provides a simple method to take the snapshot,

save it in a designated folder, compare the changes, and update

the saved ones. This feature is actually a big upside of Jest. vue-

test-utils and “Testing Vue.js Application” also use Jest for

snapshot testing. With that being said, Jest is chosen as the

snapshot testing tool.

End-to-end Testing

End-to-end testing checks an app by automating browser

and simulating user interactions. In order to do this, it requires

a tool that is able to control the browser. Vue in their official

documentation recommends Nightwatch and Cypress for end-

to-end tests [2].

Nightwatch is an open-source test framework for

automating browsers started in 2012. It comes with a built-in

test runner and provides API to perform commands and

assertions on the browser. Apart from the main feature,

Nightwatch also offers custom assertions, built-in test

reporters, Page Object support, and parallel test runs [6].

Cypress is a younger open-source test framework for

browser automation, started in 2015. It also comes with a built-

in test runner and provides API to control the browser.

Additionally, Cypress offers a GUI dashboard for tests

management, automatic browser waiting, real-time reloads,

and parallel test runs [7].

Over the last 2-year, Cypress has been gaining more

popularity compared to Nightwatch. Developers are

advocating for it, mainly due to the dashboard GUI and

improved developer experience [8]. However, Cypress has a

big downside compared to Nightwatch. Since it is based on

Chromium, it currently only supports tests in Chromium-based

browsers. Nightwatch, which is based on Selenium, supports

tests across common browsers (Chrome, Firefox, Internet

Explorer, and Edge).

OWOW’s web apps are expected to run properly across

common browsers. End-to-end testing in these browsers will

greatly help to ensure the app’s browsers compatibility. For this

sole reason, Nightwatch is chosen to be the end-to-end testing

tool.

Albert P. et al. / Test Driven Development in OWOW’s Full-stack Web Development / JIRAE, Vol. 4, No. 2, October 2019, pp. 46–50

 49

3.3 Continuous Integration

Continuous Integration (CI) is the practice of routinely
integrating code changes into the main branch of a repository,
building and testing it, as early and often as possible [9]. This
practice is strongly related to code version controlling.

OWOW uses Git as its version control system and
Bitbucket as the version control tool. This means OWOW puts
its Git repositories on the Bitbucket server.

A key part of CI that is lacking in OWOW is Test Auto-
mation. Test Automation is running software tests automa-
tically by a machine in a repeatable way, without the need of
human intervention [9].

OWOW has done frequent code integration through its Git
workflow, but no Test Automation yet. Therefore, the aim is to
implement CI, focusing on Test Automation. Because
otherwise, the tests resulted from TDD will not be utilized
maximally, as they have to be manually run.

After discussion with OWOW developers, it was decided
that Test Automation should be run:
• Whenever there is a pull-request made.
• Whenever there is a merge made to develop, staging, and

master branch.

As OWOW uses Bitbucket, for simplicity reason, the CI

tool selected is Bitbucket Pipelines. It is able to do Test
Automation with effortless integration, configurable settings,
informative UI, and reasonable budget.

4. Implementation

4.1 RentIt

RentIt is a web app that serves as a machine renting
platform. The main idea is that a construction company can
create a rent request, which rental companies can reply to. The
construction company can then select which offer it prefers and
proceed the order. The purpose of RentIt is to facilitate easier
renting process in the construction industry.

A part of RentIt is selected as the TDD pilot case, which is
the “Admin Manages Machines” Epic (AMM). This Epic is
about giving an admin the ability to manage machines of the
whole platform. Each machine has a name, a description,
multiple types, and multiple options. This Epic is broken down
into several User Stories:
• Admin able to see machines index.
• Admin able to create a machine.
• Admin able to see a machine’s details.
• Admin able to edit a machine.
• Admin able to archive a machine.

AMM Epic is implemented in both back-end (called rentit-
api) and front-end (called rentit-ui).

4.2 Back-end

As previously stated, the back-end’s responsibility is to
provide web API to communicate with front-end. rentit-api is
expected to provide web API for all of AMM Epic user stories.
For each user story, this TDD process had been performed:
1. Specify requirements of the user story.
2. For each requirement, write a feature test.
3. When writing the feature test, if a unit test is deemed

necessary, write a unit test.
4. Write implementation code to pass the unit test.

5. Write implementation code to pass the feature test.
6. Refactor test and implementation code.
7. Repeat step 2-6 until all requirements are met.
8. Do a manual test with Postman.

User story requirements specification was done during the

sprint meeting. The user story’s web API request and response

data were specified. Furthermore, the main use case (happy

flow) and edge cases were described.

For each user story, a feature test file was written. The file

contains multiple feature tests. Each simulates the HTTP

request and asserts the response and/or the database.

The last step of developing the user story is manual testing

with Postman. Postman is a web API client tool. It is used to

manually send HTTP requests to the web API and check the

response returned.

Once all user stories are done, Continuous Integration was

implemented for rentit-api and test code coverage was

measured. Table 3 below shows the code coverage results for

rentit-api.

Table 3. Back-end Code Coverage

 Code Coverage

All Code 16.42%

Machine Store Request 100%

Machine Update Request 100%

Machine Controller 100%

Machine Manager 100%

Machine Repository 37.5%

Machine Model 100%

Machine Code (Avg) 90%

4.3 Front-end

As previously stated, the front-end’s responsibility is to

provide UI to handle user interactions. rentit-ui is expected to

provide web API for all of AMM Epic user stories. For each

user story, this TDD process had been performed:

1. Break down all the components needed in a user story.

2. For each component, specify its requirements.

3. For each requirement, write a unit test.

4. Write implementation code to pass the unit test.

5. Repeat step 3-4 until all requirements are met.

6. Manually check the component in browser and style it.

7. Write snapshot test of the component.

8. Go back to step 2, until all components are done.

9. Write end-to-end test of the user story.

10. Refactor test and implementation code.

Each user story has a corresponding UI page designed. The

page was broken down into components, considering

modularity and reusability. Requirements of each component

are mostly evident from the design, thus can be inferred

straightforwardly by the developer. Occasionally some com-

ponents’ requirements are discussed during the sprint meeting.

There are 2 types of components: container and presen-

tational. For each user story, the TDD process started with

the container component (parent) and continue to the

presentational components (children). Unit tests were also

written for the Vuex store instance, which handles the

communication with back-end API.

Albert P. et al. / Test Driven Development in OWOW’s Full-stack Web Development / JIRAE, Vol. 4, No. 2, October 2019, pp. 46–50

 50

After all requirements of the component are met, the

component was checked in browser and styled. Once proper

HTML output was achieved, the component snapshot test was

written.

Finally after all components of the user story were done,

end-to-end test was written to make sure everything works

together correctly.

Once all user stories were done, Continuous Integration

was setup for rentit-ui and code coverage was measured. Table

4 below shows the code coverage results for rentit-ui.

Table 4. Front-end Code Coverage

 Code Coverage

All Code 16.74%

components/machines/Create 100%

components/machines/Edit 100%

components/machines/Form 100%

components/machines/Index 100%

components/machines/Table 100%

components/machines/Table Row 41.67%

components/common/(Machibe)* 66.46%

store/modules/Machine 75%

library/store/Model Factory 89.58%

Machine Code (Avg) 86%

 (Machine)* = The common components that are used in AMM Epic

5. Conclusions and Recommendations

Research had been done to investigate how to apply TDD

in OWOW’s full-stack web development. The findings had

been implemented in a web project called RentIt. It is

concluded that OWOW has been introduced to apply TDD in

its full-stack web development.

The TDD application was separated between back-end and

front-end development. In back-end, TDD was applied by

writing feature and unit tests, writing implementation code, and

refactoring.

In front-end, TDD was applied by writing unit tests, writing
implementation code, writing snapshot and end-to-end tests,
then refactoring. TDD is related to Continuous Integration,
specifically Test Automation. Test Automation had been
researched and implemented in back-end and front-end of
RentIt. Therefore, the tests written in the TDD process will be
automatically run according to the trigger events specified.

For future improvements, it is recommended that in front-
end OWOW adopts TDD gradually. OWOW developers
should get familiar with front-end testing first. Additionally,
TDD application should be determined in a case-by-case basis.
Despite all the pros TDD are advocated for, it can slow
development. OWOW should attentively decide in which
projects or features TDD shall be applied

References

1. Yerburgh, E. Testing Vue.js Applications. New York:
Manning, 2018.

2. Vue.js Official Documentation. Available from:
https://vuejs.org/

3. Wheeler, K. Jest vs Mocha: Which Should You Choose?
Available from https://blog.usejournal.com/jest-vs-mocha-
whats-the-difference-235df75ffdf3

4. Yerburgh, E. Vue Unit Test Performance Comparison.
Available from: https://github.com/eddyerburgh/vue-unit-
test-perf-comparison

5. Miller, L. Vue Testing Handbook. Available from:
https://lmiller1990.github.io/vue-testing-handbook/

6. Nightwatch Official Documentation. Available from:
https://nightwatchjs.org/gettingstarted/

7. Cypress Official Documentation. Available from:
https://docs.cypress.io/guides/getting-started/why-cypress.
html

8. NPM Trends. Nightwatch vs Cypress. Available from:
https://www.npmtrends.com/nightwatch-vs-cypress

9. Radigan, D. Continuous Integration, explained. Available
from: https://www.atlassian.com/continuous-delivery/
continuous-integration

