

38

JIRAE, Vol. 1, No. 1, September 2016, 38-45 DOI: 10.9744/JIRAE.1.1.38-45

e-ISSN 2407-7259

Building APMv3 Map Visualization Using Nagios Host Data

Hans Sebastian Tiono

1,a
, Jelle Oosterkamp

2,b
, Tom Peperkamp

3,c

1Department of Informatics, Petra Christian University, Surabaya, Indonesia
1,2Information and Communication Technology, Fontys University of Applied Sciences, Eindhoven, The Netherlands

3Acknowledge Proactive Monitoring, Acknowledge Benelux BV, Waalre, The Netherlands
a
hanssebtino@gmail.com,

b
j.oosterkamp@fontys.nl,

c
tompeperkamp@akcnowledge.nl

Abstract. Nowadays, having a network monitoring is becoming an important thing for a growing or big

company which should also have a network infrastructure inside it. Network monitoring is the use of a system

that constantly monitors a computer network for slow or failing components and that notifies the network

administrator in case of outages [1]. Acknowledge Proactive Monitoring (APM), one of the sub-departments

in Acknowledge, focuses on developing a network monitoring system using the Nagios tool. However, one of

its main features called Map Visualization is not really efficient in terms of its map management. The current

stable version of the system is called APMv2 and the team is developing a new version called APMv3 which

needs a better Map Visualization. The application made in this project was a proof of concept that will later be

used on APMv3. It is a web-based application which has a separate frontend written in HTML and JavaScript,

has a separate RESTful backend written in PHP, and uses some frameworks such as jQuery UI, jCanvas,

Twitter Typeahead, and Bootstrap 3. All necessary data within this application are exchanged asynchronously

using AJAX.

Keywords: Map Visualization, APM, Nagios, APMv2, APMv3.

1. Introduction

This project was carried out at one of the companies in

The Netherlands named Acknowledge Benelux BV.

Figure 1. Company logo

1.1 Acknowledge

Acknowledge is a company which provides business

and IT solution to its clients. The company has currently 230

workers, who work in various departments. Acknowledge

was founded in 1994 and was started as an IT supplier

which provided box products, software licenses and small

solutions. Throughout the years the company expanded its

services towards its current portfolio and size.

1.2 Acknowledge Proactive Monitoring

Acknowledge Proactive Monitoring (APM) is one of the

sub-department in Acknowledge which focuses on deve-

loping a system to monitor its client’s computer systems,

network, and infrastructure environment (usually in general

they are called hosts). The client’s hosts have status such as

up/down/unreachable/pending, and they are visible in real

time. So, whenever a host has a problem, the client will be

alerted that some required actions should be performed to

fix that problem. APM team does not use any local

repository to store their works and code, but they use Git

instead as their separate storage, so it supports the flexibility

of their work.

The project was carried out in this sub-department. Tom

Peperkamp is the head of APM as well as the project

supervisor.

2. Project Overview

2.1 Background

Until now, APM team uses in-house developed appli-

cation called APMv2 and it is the current stable version. The

team is developing a new version of the application called

APMv3.

2.2 APMv2 Application

APMv2 is functioning properly and has been broadly

used to monitor clients’ hosts.

Figure 2. APMv2 status overview page

The application is web-based, written mostly in Python

and partially in PHP. There are several terms in APMv2

such as host and service. Both of them are the main objects

that are monitored by APMv2. A host in APMv2 basically

refers to the computer, server or device which can be in

physical or virtual form with a specific IP address. By

contrast, a service is a process running on a host. A host can

have more than one service or possibly has no services at all,

Tiono, H.S. et al. / Building APMv3 Map Visualization Using Nagios Host Data / JIRAE, Vol. 1, No. 1, September 2016, pp. 38–45

 39

depending on the host type. There are some particular types

of host which does not have any service.

Each host has a specific status (up / down / unreachable /

pending). Figure 2 is APMv2 status overview page which

has two pie charts indicating the hosts (left pie chart) and

services (right pie chart) status overviews. Every color has a

meaning: green is up, red is down, yellow is unreachable,

and blue is pending. APM users can simply click on the

status to see the hosts or services with the specified status.

One of the main functionalities in APMv2 is the Map

Visualization. In this case, map refers to the network logical

or physical diagram. Map visualization visualizes the client

IT environments according to the APM standard. One of the

reasons to use map visualization is to help the users better

understand the connectivity between different hosts result-

ing in doing a faster impact analysis of the monitoring result.

By visualizing the standardized map, users can notice easily

how the IT infrastructure environment was constructed.

APMv2 application uses a tool called Nagios [2] for the

whole monitoring functionality. For the Map Visualization

functionality, APMv2 uses a tool called NagVis [3].

2.3 APMv3 Application

APMv3 has the same functions and still uses Nagios as

its monitoring tool, but there will be some improvements

and one of them is data storing and retrieval using an API.

Figure 3. Expected architecture of APMv3

The main purposes of building APMv3 are to improve
major functionalities, to make robust and scalable software,
and to increase user experience through a well-built user
interface.

APMv3 will use an API called APM API which is a
door to some supportive backend data in the APMv3
application. The API also helps APM standardize the data
flow (the data that goes out from database to user and vice
versa), store some application protocols, and authenticate
and/or authorize the user.

2.4 Current Problem

Due to a version change from APMv2 to APMv3, APM
needs to rebuild the system all over again and it takes a lot
of works. One of the major works needed to be done is the
Map Visualization functionality in APMv3. Simple illustra-
tions below on how APM users create a new map (Figure 4)
and maintain it (Figure 5) will demonstrate why the way
NagVis works in APMv2 is considered not efficient.

1. They have to make an image based file (.jpg/.png)
network diagram in third party software like Microsoft
Visio or any diagram builder.

2. They have to upload the image to the NagVis appli-

cation.

3. They need to add a host/service symbol on each relevant

host in the network diagram one by one. NagVis is just

simply adding small icons identifying whether they are

hosts and/or services. The icon will also indicate the

status of the corresponding host or service.

Figure 4. Creating a map in APMv2 Map Visualization

Figure 5. Modifying the created map

The map that has been created and added with some

host icons will be active. NagVis will automatically relate

the host icon to a specific real host status. So, the status on

the map will follow the real status. However, the map will

be difficult to maintain, in particular whenever a change

occurs in the map (shown in Figure 5).

1. They have to edit the map in the third party diagram

builder (e.g. Microsoft Visio) again.

2. They have to re-upload the image and set it as the

background. In Figure 5, the host icons remain the same

as the first version of the map because NagVis just saves

their x and y positions.

3. The users have to re-adjust the host icons.

The map in Figure 5 is simple and it might be still

durable. However, if the map had for instance 50 or 100

hosts, the re-adjustment would be a very exhausting work.

2.5 Project Description

The project was initialized with a purpose to improve

the current Map Visualization on APMv2 to be applied later

in the APMv3. The company hopes that APMv3 has a more

efficient Map Visualization and could exchange every data

via API. The project in overall is to research and build a new

way in visualizing the monitoring results for APMv3 map

visualization.

2.6 Functional Requirement

Here are the functional requirements of the program:

add/edit/delete icons, add/edit/delete/view maps, add/edit/

delete icon categories, and view activities.

Tiono, H.S. et al. / Building APMv3 Map Visualization Using Nagios Host Data / JIRAE, Vol. 1, No. 1, September 2016, pp. 38–45

 40

2.7 Technical Requirement

APMv3 Map Visualizer is responsive because the map

size follows the screen resolution. However, the application

is designed in a computer environment which has the screen

resolution of 16801050px, so it is highly recommended to

use this application on the 16801050px screen resolution.

The application has been tested on several browsers and it

works well on Chrome, Mozilla Firefox, Opera, and Safari.

3. Project Initiation

There are 3 possibilities to accomplish the project. First,

NagVis may still be used but it will be improved to become

more like an object oriented visualization tool. Second, other

completely different visualization tools or facilities are

employed to replace NagVis. Third, a working visualization

tool is built from scratch to be applied in APMv3.

3.1 Improving NagVis

After some research, it could be inferred that improving

NagVis was possible, but it was nearly impossible to be

accomplished by those who did not contribute in writing it

or people outside the developer area because of the

complexity of its code.

3.2 Using another Available Tool

There is another Map Visualization tool for monitoring

purpose called Zabbix [4]. However, since the Map

Visualization of Zabbix is Zabbix’s proprietary, it was not

possible to apply it for APMv3 which has a developed

Nagios environment inside it.

3.3 Creating a Tool from Scratch

The only possibility would be to create a self-made map

visualization feature for APMv3. The criteria to determine

that this possibility is the best are the flexibility, reasona-

bility, sustainability, and suitability to APMv3. The advan-

tages of creating a tool from scratch are:

1. The tool is fully flexible – i.e., no need to follow some

tool regulations or functions – and 100% unique so it

has a sale or market value. The flexibility is measured

through the programming language alternatives that the

author could choose and the exact functionalities of the

final product that the author himself could determine.

Since the tool will be part of the whole APMv3

monitoring tool, the visualization module is considered

an added value that users will find useful and can raise

the application product’s value.

2. The tool can be adjusted to be completely suitable to

APMv3 and can exactly fulfill what APMv3 needs, and

all kind of features can be easily added.

3. No need to study an available visualization tool and the

way it works.

4. At the end, the tool creator can master his tool, which

means he will understand the tool program as a whole.

The disadvantages of creating a self-made map visuali-

zation tool are:

1. Additional research has to be done regarding what
frameworks should be employed and how to build the
tool.

2. It will be a lot of works since the tool is built from zero.
3. There will be some risks that the tool does not work

properly or there will be some bugs since a new freshly-
built tool cannot be compared to a mature visualization
tool, like NagVis, that has been through a lot of testings.
A careful application development is needed.

3.4 Project Initiation Conclusion and Decision

Thus, it had been decided to create the map visualization
from scratch. The advantages can outweigh the disadvan-
tages because the final application will satisfy the most
desirable purpose of APMv3 map visualization: to retrieve
data only via API. The full flexibility of the application is
one of its main advantages. Other alternatives may be nearly
impossible to accomplish that and may require several
backends besides the API.

4. Project Design

4.1 Entity Relationship Diagram (ERD)

ERD describes the data structure that is stored in the
database. Figure 6 explains the ERD of APMv3 Map
Visualizer which uses 7 tables: maps, maps_details,
maps_relations, icons, categories, last_filenaming, and acti-
vities.

 Table maps stores the general information of a map and
has a child table called maps_details which stores map
host information inside a map.

 Table maps_details has a child table called maps_
relations which stores optional line relations between
two map hosts.

 Table icons stores the icon images’ information used to
represent a map host and they are categorized in table
categories.

 Table last_filenaming is mainly used only to give
incremental file names of the icons when a new one gets
inserted by users.

 Table activities logs and tracks all user activities within
the whole application.

5. Project Construction

5.1 Frameworks or Plugins Used

There are some frameworks used as plugins in the
application. Those plugins are some JavaScript frameworks
(jQuery, jQuery UI, jCanvas [5], Twitter Typeahead,
PNotify) and a CSS framework (Bootstrap 3). Bootstrap 3
[6] and jQuery are already used in APMv3.

5.2 Building Icon

The first thing to do is to build the icon management of
the application. This includes add/edit/delete icons func-
tionalities. The icon will be later used on a map as an image
representation of a host. A single icon is designed to be

100100 pixel size, but later, it can be resized to be bigger
or smaller while it is being used on the map.

Tiono, H.S. et al. / Building APMv3 Map Visualization Using Nagios Host Data / JIRAE, Vol. 1, No. 1, September 2016, pp. 38–45

 41

Figure 6. ERD of APMv3 Map Visualizer

5.2.1 Icon Image

Each map host must have exactly one icon image, so it

is mandatory to link an icon with an image URL in the

database. Figure 7 shows a clear example of how the host

icon looks alike. Almost all the images are taken from

Microsoft Visio [7].

Figure 7. Examples of APMv3 Map Visualizer icons

The preferable icon image file type is PNG because it

supports transparency and has a better image color quality

than GIF.

5.2.2 System Icon

A single icon could be either a system icon or just a

normal icon. A system icon is an icon that can neither be

created, edited, nor deleted by anyone except the system

administrator. The purpose of the system icon is to represent

the general standard icons in APMv3 Map Visualizer. The

system icons have existed since the application was built.

Any new icon that is created will be just a normal or custom

icon, which can later be edited or deleted.

5.3 Building Category

Each icon is categorized in a category which means

every icon must have exactly one category, as shown in

Figure 8.

Figure 8. Examples of APMv3 Map Visualizer categories

There is also a system category that has the same

concept as the system icon. It is a category that cannot be

created, edited or deleted except by the system

administrator. When the application is installed the first

time, there are some initial categories with some initial icons

inside them. Table 1 shows all initial categories and icons

inside it.

5.4 Building Map

Maps are what the application needs after the icons and

categories have been created and filled with some records. A

map is an empty place or field where the map host along

with their relation(s) to other map host(s) can be placed and

later it will become meaningful network information of a

particular IT infrastructure.

Table 1. Initial Categories and Icons

Category Icon name Icon System

Infrastructure
(system category)

Iconless Host

Yes

Computer

Yes

Server

No

Router

Yes

Switch

Yes

Firewall

Yes

Storage

Yes

Air Conditioner

Yes

UPS

Yes

Telephone

No

Platform
(system category)

Windows Host

Yes

Linux Host

Yes

Database

Yes

Applications
(system category)

Website

Yes

Active Directory

Yes

Clients
(system category)

Sensor

Yes

Workplace

Yes

Printer

Yes

Tiono, H.S. et al. / Building APMv3 Map Visualization Using Nagios Host Data / JIRAE, Vol. 1, No. 1, September 2016, pp. 38–45

 42

The visualization of the maps is generated inside an
HTML div element with an absolute positioned HMTL
canvas on top of it. Each canvas in the maps is maintained
by jCanvas and all canvas drawing is done by it. The
application uses only the line drawing method from jCanvas
to draw the map host relations.

5.4.1 Map Size

Each map has a specific size depending on how big the
map needs to be. The width and height attributes in table
map will store the map’s size in pixel (px) units. The
minimum width and height of the map are set to be 100px
and there is no restriction for the maximum map size. The
default map size when it is first created is adjusted to the
computer’s resolution size.

5.4.2 Map Background

A map can have a background image or not. The
background is set on the map by inserting it as a CSS
background-image of the map HTML element without any
repeat. There is no size restriction of the background and the
background will remain at its original size. However, it is
recommended to use an image smaller than 3MB, so the
image upload would be fast. If the background is too small
or too big comparing to the map size, the background will
not be stretched on the map.

5.4.3 Map Host

A map can have zero or many map hosts. A map which
does not have any host is an empty map or a new map that
has just been created. All map host data are saved in a table
called map_details.

5.4.4 Map Host Relation

A map host can have no relation or many relations to
another map host. If there is a relation between two hosts in
a map, then there will be a straight line drawn between those
two hosts using jCanvas, a JavaScript plugin for HTML5
canvas. The relation data are stored in table maps_relations.
Figure 9 clearly illustrates the whole components of a map.

Figure 9. Map components

5.5 Building Asynchronous Backend Connection on

APMv3 Map Visualization

Ideally, after the application has finished, all data
connections between the application and the database have
to go through the APM API. However, the APM API is still
being built and it is not possible to be used as intended. At
first, APMv3 Map Visualizer used HTML, JavaScript, and

PHP altogether, resulting in a very complex web
application, and later it would be hard to integrate it with
APM API because it does not use PHP. So, it had been
decided to take all the PHP code to be a separated temporary
API (backend) and the remaining code would be only
HTML and JavaScript (frontend). The final application
would be much easier to migrate to the finished real API as
the main advantage of building the temporary API. Figure
10 shows three possibilities in building the application
backend.

Figure 10. Possible backend communications

The temporary API will process all the server-side data.
All of the application webpages are the frontends, which
will display the client-side information as interactively as
possible. The only data ready to be used from the APM API
are the host data, so the application will use a JSON external
file [8], which is derived from the APM API. After the
APM API is ready to be used, the temporary API and the
external JSON file will be migrated fully to the APM API.

The frontend communicates with the backend using
AJAX (Asynchronous JavaScript and XML). AJAX is
asynchronous data communication protocol. With Ajax,
web applications can send data to and retrieve from a server
asynchronously (in the background) without interfering with
the display and behavior of the existing page [9].

5.5.1 RESTful Architecture Approach

The AJAX connections will be built according to the
RESTful architecture, which means the connections use a
set of HTTP methods: GET for selecting data, POST for
inserting data, PUT for updating data, and DELETE for
deleting data.

5.5.2 Application Endpoints

An endpoint is the URL needed to be specified within
the AJAX call in order to do a correct intended action. To
give illustration, the endpoint to select maps is different with
the endpoint to select icons. The temporary API needs to use
fifteen endpoints with different HTTP methods from the
total of eight tables. Table 2 lists all the endpoints along with
their explanation.

5.5.3 Data Structure in JSON

All AJAX connections will return a JSON formatted
data, even if the connections are meant to insert, update or
delete from a table. The select operation will obviously
return the specified table contents in JSON but The JSON
data returned from insert, update, or delete operations are
different

Tiono, H.S. et al. / Building APMv3 Map Visualization Using Nagios Host Data / JIRAE, Vol. 1, No. 1, September 2016, pp. 38–45

 43

The application frontend will receive all kinds of

notification messages and will display them in the client-

side interface using PNotify, as shown in Figure 11.

Figure 11. Examples of notifications displayed

5.5.4 Data Retrieval Method

The map data are retrieved on the frontend page by

using both jQuery.getJSON() and jQuery.ajax() request

methods. Both of them are AJAX request methods. In the

APMv3 Map Visualizer, they are used together because

they have their own advantages and disadvantages.

jQuery.getJSON() does not need many lines of codes.

Another advantage of using jQuery.getJSON() is that you

can actually store the result in a global JavaScript variable to

be used later on. The jQuery.ajax() method returns a result

which can only be used inside the function of the success

handler due to the asynchronous nature of AJAX. So the

result should be displayed immediately, and later if we need

to refresh it, we have to recall the jQuery.ajax() request

again, causing more page loadings and slowing down the

application. That is one disadvantage of using the jQuery.

ajax() request method.

However, there are at least two advantages of using the

jQuery.ajax() method. First, unlike jQuery.getJSON() that

can only use GET HTTP method, jQuery.ajax() can use all

four HTTP methods (GET, POST, PUT, and DELTE). So,

jQuery.ajax() will support the RESTful architecture which is

already being built in the APM API. It is possible to use

GET HTTP method to serve POST, PUT, and DELETE

purposes, but the application then will not have the RESTful

architecture anymore. The second advantage of using the

jQuery.ajax() request method is that the error can be

returned in a very simple way using the error setting from

the jQuery.ajax() itself which is written above, error:

function(the_error){}.

Therefore in the APMv3 Map Visualizer, all insert,

update, and delete operations use jQuery.ajax() to maintain

the application to be RESTful, whereas the select operations

usually use jQuery.getJSON() because the returned results

are usually needed to be used again later.

5.6 Building Activities Tracker

The application has a feature to log every single action

that is performed. The logging function is in the backend

and the activity data are stored in table activities. The table

contains what the activity was, where and when it was done.

The activity tracker is displayed in a separate webpage and

user can sort the activities according to their table header

(ascending or descending) using jQuery table sorter. Figure

12 shows how the activity tracker looks like.

Figure 12. Activities Tracker display interface

Table 2. List of APMv3 Map Visualizer endpoints

Method Endpoint Usage

GET /visualization/activities/ Get the list of all activities in JSON

GET /visualization/categories/ Get the list of all categories in JSON

GET /visualization/icons/ Get the list of all icons in JSON

GET /visualization/maps/ Get the list of all maps (without map hosts and relations) in JSON

GET /visualization/maps/{id} Get a specific map along with its map hosts and relations in JSON

POST /visualization/categories/ Insert a new custom category

POST /visualization/icons/ Insert a new custom icon

POST /visualization/maps/ Insert a new map

POST /visualization/images/ Upload a new image for a map back-ground or an icon image depending on the

value of the _POST[‘imgtype’] variable

PUT /visualization/categories/ Edit a specific category

PUT /visualization/icons/ Edit a specific icon

PUT /visualization/maps/ Edit a specific map along with its map hosts and relations

DELETE /visualization/categories/ Delete a category

DELETE /visualization/icons/ Delete an icon

DELETE /visualization/maps/ Delete a map along with its map hosts and relations

Tiono, H.S. et al. / Building APMv3 Map Visualization Using Nagios Host Data / JIRAE, Vol. 1, No. 1, September 2016, pp. 38–45

 44

6. Map Editor and Map Viewer

Map editor and map viewer are the two most important

pages in the APMv3 Map Visualizer. As the names already

imply, the map editor page is where a user can edit a map

and the map viewer page is where a user can view a map.

6.1 Map Editor

The map editor has a page layout such as shown in

Figure 13. This page uses Bootstrap 3 JavaScript (like

popover for the map options, tooltip for icon explanation,

collapse for icon selection in side bar, and modal for

displaying map menu) to support its functionality and user-

friendliness.

Figure 13. A preview of map editor page layout

One component in the map editor is the map host. When

a map host is clicked, it will show a popover (shown in

Figure 14) to adjust or change its host data.

Figure 14. A popover detailing the map host data

There are several actions that a map host can do. Figure

15 displays some actions that can be applied to a map host.

Figure 15. Actions that can be applied to a map host

6.2 Map Viewer

The map viewer shows the whole map along with its

map hosts, map host relations, and status of every map host.

A map can be categorized as a logical map which does

not have a background (shown in Figure 16) or a physical

map which has an image background (shown in Figure 17).

Figure 16. A preview of a logical map

Figure 17. A preview of a physical map

There are five possible host statuses (illustrated in Figure

18). The green host indicates “up” status, the red host

“down” status, the yellow host “unreachable” status, the

blue host “pending” status, and the black host “unknown”

status. All statuses are retrieved from hostresources.json,

which came from the APM API.

Figure 18. All host statuses

7. Conclusion and Recommendation

All mandatory requirements of the application have

been fulfilled. An optional requirement, which is to provide

authentication and authorization features within the final

application, is not done because the process has to follow

APMv3 user data (retrieved from APM API) and the API is

still being built right now, so it is not possible to complete

this requirement. Thus, the use case diagram is also

discarded because it explains the authentication and autho-

rization part.

Tiono, H.S. et al. / Building APMv3 Map Visualization Using Nagios Host Data / JIRAE, Vol. 1, No. 1, September 2016, pp. 38–45

 45

APMv3 that is still being developed will later incorpo-

rate the APMv3 Map Visualizer for its map visualization

feature. Through some research, the application was decided

to be built from scratch. It is a web-based application, which

has a separate frontend (written in HTML and JavaScript)

and a separate RESTful backend (written in PHP). All

necessary data within this application are exchanged

asynchronously (in and out) using the AJAX method.

The APMv3 Map Visualizer can overcome the current

map visualization’s problem, which requires APM users to

recreate the image-based map whenever a change occurs in

the map, because the application can create the map itself

directly on the webpage and it does not need any third party

software like Visio to design the map. Compared to NagVis,

which is used in APMv2, the final application has two major

advantages: 1) it is fully flexible to be integrated with APM

API (NagVis needs a huge customizations to integrate it

with APM API) and 2) it uses a separate frontend and the

API will be the only backend, which means there is no need

to install any web service (NagVis needs to install PHP).

Further recommendation would be completing the

application with authentication and authorization features

after it has been integrated with the APM API and imple-

menting security within the application.

References

1. Wikipedia, Network Monitoring. Available: https://en.
wikipedia.org/wiki/Network_monitoring [Jun 2015].

2. Nagios Enterprise, Nagios – The Industry Standard in IT
Infrastructure Monitoring. Available: http://www.nagios.
org [Jun 2015].

3. NagVis Project Team, NagVis 1.8 Documentation.
Available: http://docs.nagvis.org/1.8/en_US/index.html
[Jun 2015].

4. Zabbix, Zabbix – The Enterprise-Class Open Source
Network Monitoring Solution. Available: https://www.
zabbix.com [Jun 2015].

5. Evans, C., jCanvas – jQuery Meets the HTML5 Canvas.
Available: http://calebevans.me/projects/jcanvas/ [Jun
2015].

6. Otto, M. and Thornton, J., Bootstrap 3. Available:
http://getbootstrap.com [Jun 2015].

7. Microsoft, Microsoft Office Visio Professional 2013,
2013 [computer software].

8. ECMA International, The JSON Data Interchange
Format, Standard ECMA-404 1

st
 ed., 2013. Available:

http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-404.pdf [Jun 2015].

9. Garrett, J.J., Ajax: A New Approach to Web Appli-
cations, 2005. Available: http://adaptivepath.org/ideas/
ajax-new-approach-web-applications/ [Jun 2015].

