

21

JIRAE, Vol. 4, No. 1, April 2019, 21-25 DOI: 10.9744/jirae.4.1.21-25

e-ISSN 2407-7259

Magento 2 and Elasticsearch Integration

Andy Sukanto Kan1,a, Peter Boots2,b, Bart Delvaux3,c

1 Department of Informatics, Petra Christian University, Surabaya, Indonesia & Information and Communication Technology, Fontys University

of Applied Sciences, Eindhoven, The Netherlands
2 Fontys University of Applied Sciences, Eindhoven, The Netherlands

3 ISAAC, Eindhoven, The Netherlands
aandysukanto.ask@gmail.com, bp.boots@fontys.nl, cbart.delvaux@isaac.nl

Abstract. The purpose of this research is to extend the default integration of Elasticsearch in Magento 2.3 to search

for other content which is category and content pages. The current search engine in Magento uses the default

MySQL search engine, with the new update of Magento 2.3, Elasticsearch is introduced as an optional search

engine. Elasticsearch provides a better and optimized full text search, however this new integration can only search
the catalog products, therefore a way of extending the integration of Elasticsearch in Magento is searched for. The

features that wanted to be implemented is Category search using Elasticsearch in Magento 2.

Keywords: Elasticsearch, Magento, Full text search, PHP, Indexing.

1. Introduction

An optimal search experience is very important for an E-

commerce website to provide their consumer with. Good

search experience leads to more conversion, which means

more profit. One way of doing that is providing full-text search,

which Elasticsearch is able to provide. Compared to other

search methods such as Boolean search and standard database

search, using Boolean search requires a lot of filtering that the
user needs to input, this can turn out to be a hassle for some

users, while standard database search doesn’t have advanced

features such as stemming that can improve search result by

finding the root form of a word, weighting which is used for

keyword prioritize keyword, synonyms which is useful for

query expansion, stop words that can improve search result by

filtering common words out and much more. With full-text

search, a website can now search into documents just like a

human. That’s why ISAAC is trying to integrate Elasticsearch

into their E-commerce solutions. ISAAC usually uses

Magento, a PHP based E-commerce platform. The current

search engine used in Magento is the default MySQL search
engine, which is a standard database search method. With the

update of Magento 2.3, Magento now comes with the

integration of Elasticsearch as their search engine. The

Elasticsearch integration with Magento 2 is specifically made

for searching the product catalog of Magento. The main goal

of this project is to extend the integration to be able to search

other items which is Category of Magento 2 and do index

operation such as search and reindexing.

2. Research and Implementation

2.1 Elasticsearch

This project will focus on using Elasticsearch to search and

store categories and content pages of Magento 2. Content

pages refers to pages that belong to Magento’s CMS.

Elasticsearch is a group of one or more Elastic nodes which

contains shards. Figure 1 shows the cluster configuration in this

project. As seen on figure 1, there are 2 nodes in the cluster

where node 1 is the master node. Inside each node there are

indices and shards, the numbers indicate the amount of shard

in a node, while the colors indicate their roles. The dark blue

colored squares represent the primary shards, while light blue

colored squares represent the replica shard. Category and

CMS indices here represent the indices for the feature being

implemented in this research, which is Category and CMS

pages search.

Figure 1. Cluster configuration

As seen in figure 1, this project will use two nodes which

is the Master and Data nodes in the same cluster, this way a
replica can be put in the data nodes. This ensures high

availability in case a shard/node fails. Two nodes were used in

this project since it’s the minimum number of nodes needed to

allocate replica shards; the minimum amount is chosen as the

configuration because the number of sample data used in this

project is relatively small. The number of nodes varies

depending on the size of data; website with larger data to store

will require a higher number of nodes for better scalability.

Andy S. K.. et al. / Magento 2 and Elasticsearch Integration / JIRAE, Vol. 4, No. 1, April 2019, pp. 21–25

 22

 Before storing documents in Elasticsearch indices, index

needs to be first configured. Index configurations include Index

name, number of shards, mapping and analyzer. These are the

configurations that needs to be configured during index

creation. Other classes used to simplify the task are:

• IndexNameResolver to handle the index name with during

creation of a new index to prevent downtime, this will be

further discussed in point 2.5.

• Field Mapper to retrieve the attributes of the
categories/content pages from Magento’s database and

map it according to their data types, this will be further

discussed in point 2.3.

• Builder class is used to configure the settings of the

analyzer in Elasticsearch, the settings of the analyzer will

be further discussed in point 2.4.

2.2 Indexing

Magento 2 has 2 indexing types:

• Full Reindex rebuilds all the indexing-related database

table. This can be done any time using the command line.

• The logic workflow for partial indexing is displayed in the

diagram below:

Figure 2. Partial reindexing workflow

Partial Reindex rebuilds the database only when there is a
change on the database, the change is monitored by an

observer. There are 2 indexer modes that follows this principle,

Update on Save and Update by Schedule.

• Update by Schedule will create a changelog table to record

every change made to the described table, and will run the

indexing job according to cron schedule

• Update by save will do a reindexing every time an item is

changed in the subscribed table.

Magento allows the developer to create their own custom
indexer, this is achievable by implementing interfaces provided

by Magento. The default Magento indexer will create a special
table in the MySQL database to store the index information.

While in this project, the index table will be stored in the
Elasticsearch index because Elasticsearch will be used as the

search engine instead of MySQL.
There are four functions that needs to be implemented in

the custom indexer. These functions will be called according to

the Indexing types and the enabled mode.

• Full reindexing:

o Execute Full: This function runs when the full
reindexing command is called from the command

line.

• Partial reindexing:

o ExecuteRow: This function runs when there is a
CUD (Create-Update-Delete) operation on a

single item of the observed items, and when the
Update by Save is enabled.

o ExecuteList: This function runs when there is a
CUD operation on a list of items of the observed

items, and when the Update by save is enabled.
o Execute: This function will run according to the

cron schedule, and when the update by schedule
is enabled.

To be able to do partial reindexing an observer class is

created, this is done by implementing Magento’s observer
interface. The function of the observer is to observe specific

event, when the event is triggered, it will detect the event and
runs. This can be done by specifying which event that wants to

be tracked. In this project, an observer is created to observe the
event that tracks the changes of category and content pages to

do partial reindexing. Partial reindexing will only run when
these two events are triggered.

In this project, the ExecuteFull method will create a whole
new mapping of the index, and then load the documents.

Therefore, the best practice to run full reindexing is when some
changes need to be made to the mapping, for example a new

stemmer, different language. The other methods will all run
according to the indexer mode and will not update the index

mapping. It will only delete the item changed and will load new
list of items to the index.

2.3 Magento 2 and Elasticsearch Indexing

The Indexing workflows for the custom module is
described in the following flowchart (Figure 3).

The workflow for indexing with the Elasticsearch module
can be seen in figure 3. Before storing information in

Elasticsearch indices, a mapping of variables and its field type
needs to be first created, but each web shop can have different

attributes adjusted to their categories, that’s why the creation of
mapping for the index needs to be dynamic and not only

specially adjusted to one store.

Explicit mapping is implemented, field name and types are
predefined in the mapping in this approach. Explicit mapping

is done by creating a fieldMapper class. The purpose of this

class is to retrieve the attributes of the Categories/content pages

from Magento’s database and map it according to their data

types.

Andy S. K.. et al. / Magento 2 and Elasticsearch Integration / JIRAE, Vol. 4, No. 1, April 2019, pp. 21–25

 23

Figure 3. Indexing workflow for custom module

This way the field of the index mapping can be dynamic.

For an example, a web shop that sell candies and a web shop

that sell cars have different attributes for their categories. The

fieldMapper class can map and determine the attributes along

with their datatype without mentioning it explicitly, this makes

the module compatible with all Magento2 web shops and

unlikely to be obsolete.

The method to retrieve field information for categories and

content pages are different, the structure of the retrieved
informations is also different between the two, therefore a

specific fieldMapper class is created for each category and

content page.

Bulk API is chosen because it’s better for index/delete

operations involving a large number of documents. The Bulk

API will insert the large number of documents to Elasticsearch

index.

Partial reindexing runs when a CUD operation is

performed at the categories/content pages table. Partial

reindexing will not create a new mapping like full reindexing,

instead it will capture which id the CUD operation is
performed, then delete all the documents that match the

specified ids. After that it will do the same insert operation for

all the documents like the Full reindexing.

It is important to make sure the Elasticsearch’s document

id must be the same as the one on MySQL database. This way

delete and update operation can be performed since the

observer class will capture these ids instead of Elasticsearch’s

document id.

The default Magento search object has a condition where

it checks if Elasticsearch is the preferred search engine, it will

opt-in to use Elasticsearch when it is enabled. The default

Elasticsearch module in Magento 2 works by creating an

adapter to the official Elasticsearch PHP client. The adapter

object is extended instead of the default Magento search object.

There are some difficulties extending the default integration,

because of private variables and method in the default

integration, this turns out to be a problem since some function

did not work, especially the main function that connects to

Elasticsearch. Therefore, a custom adapter is created for

Elasticsearch with a more accessible connection method to

Elasticsearch.

2.4 Analyzer

Analysis in Elasticsearch is the process of converting text,

like the body of an email into tokens or terms which will be

used for searching. The Analysis will be performed by an

analyzer. For example, the string query “The new elegant sink”

will be split into the tokens “new, elegant, sink” after it has been

analyzed.

Elasticsearch has pre-defined Analyzers that the user can

use directly, or user can configure their own custom Analyzer.

In this project, Custom analyzer is used because some features

that are not available on the predefined analyzer such as stop

words and synonyms filter. Analyzer is configured during the

creation of an index. It is possible for every index to have their

own unique custom analyzer.

HTML Strip Character Filter is used to strip out html

entities found in the content pages input. A tokenizer receives

a stream of characters and break it into individual tokens

(usually individual words), and outputs a stream of tokens. For

example, the letter “The new elegant sink!” will be broken into

the terms [new, elegant, sink!]. These configurations are

important to break descriptions found in category and the

content from content pages into tokens.

To filter stop words in Elasticsearch, a filter is added in the

analyzer. The list of stop words is the default Elasticsearch stop

words.

Elasticsearch provide a filter that let the user configures

synonyms for the Analyzer. Synonym can be applied through

a file by mentioning the file path or directly written in the

analyzer settings. The file approach is used for the synonyms,

using file for synonyms doesn’t require creation of a new index

like the other approach that can slow down the index. The

system needs to restart the index to load new file for synonyms,

this way a new mapping doesn’t need to be created everytime

a new pair of synonym is created. Synonyms in search engine

is very useful for query expansion, for example when user

search the word for “phone” it will not only include terms that

contain the word phone but the result for “smartphone, mobile”

can also appear. This will provide user with better search

experience by providing the expected result even if the search

term is different.

To provide the user option to define their own list of

synonyms, the default Magento synonym group model is

extended. Administrator of the web shop can manage their

synonym through the default synonyms configuration on

Magento’s admin page. To monitor changes in the synonym,

an observer that monitor CUD operation on the synonym is

created. It will create a new synonym file every time a CUD

operation is performed. The file path for synonym file needs

only to be mentioned once.

Andy S. K.. et al. / Magento 2 and Elasticsearch Integration / JIRAE, Vol. 4, No. 1, April 2019, pp. 21–25

 24

2.5 Zero downtime reindexing

It is not possible to modify existing fields in an Elas-
ticsearch index. The only way of changing a mapping once an

index has been created is to reindex it.

Reindexing creates a downtime of the index during the

process, to handle this problem Elasticsearch has a feature

called index aliases. An index alias is like a shortcut or

symbolic link which can point to one or multiple indices. This

feature allows a transparent switch between one index with

another index on the running cluster. The workflow for index

mapping with aliases can be found in the following figure:

Figure 4. Zero downtime alias reindexing workflow

With this feature, a new index can be created without

directly overwriting the old index. While the indexer is creating

the new index, the old index can still be used for processing

search request. Contact with the Index is done through the alias

instead of the index name itself, after the new index is built, the

alias will be set to the new index, and all the search request will

now use the new index instead of the old index, the old index

will then be deleted.

Indices and aliases naming are important because it needs

to be unique, the indices and aliases name is updated by

appending a version to the name of the index.

For example, the alias for the category index is
isaac_category, therefore the index name should append the

version name for each iteration. The first index should be

named isaac_category_v1. Meanwhile the one that comes

after should be isaac_category_v2 and so on.

2.6 Integration Testing

During this project, an integration test is done to see how

well the three modules in this project work together, following

features are tested:

• Creation of an index in the category and content pages

index

• Insertion of documents in the category and content pages

index

• Deletion of documents in the category and content pages

index

• Partial reindexing in the category and content pages index

• Synonyms for search in the category index.

There are 9 tests in total, with 5 tests for the category

module and 4 for the CMS module, all the test runs

successfully in the Magento 2.3 with Elasticsearch 5.6

environment, the test results can be seen in figure 5 below.

Figure 5. Integration Test Report on Magento 2.3 with

Elasticsearch 5.6

An integration test with the updated environment, which is

Magento 2.3.1 with Elasticsearch 6 is also done. There are

some inconsistent failures during the testing process,

sometimes every test succeeded except the synonyms test, the

synonym insertion always fails with various errors, while some

time the other test fails with an error that says, “No alive nodes

found in your cluster”. This error might be caused by the update

of Elasticsearch 6, with some features deprecated and no longer

supported. The results can be seen in the figure below.

Figure 6. Test report on Magento 2.3.1 with Elasticsearch 6.7

3. Conclusion and Recommendation

By creating and combining several modules (base,

category, CMS), custom indexer workflow, custom

Elasticsearch cluster configuration, custom Elasticsearch
filters. The new integration can add extra features that is

previously not possible with the default integration. Features

such as category and content pages search has been

implemented and runs without any problem. Synonyms to

improve the search experience for user has been implemented.

During the research, a newer version of Magento that

supports Elasticsearch 6 has been released. After testing the

module on the newer environment, the main features which are

category and content pages search works perfectly. However,

the synonyms is not working because of deprecated features on

Elasticsearch 6. Some stability issues also occur during the

testing because of cluster failures. Further research can explore
on how to fix this stability issues, and fixing tokenizer issues

for the synonyms.

Andy S. K.. et al. / Magento 2 and Elasticsearch Integration / JIRAE, Vol. 4, No. 1, April 2019, pp. 21–25

 25

References

1. Elastic. (n.d). Elastic Search Reference 5.6, Retrieved from

https://www.elastic.co/guide/en/Elasticsearch/reference/5.
6/index.html

2. Elastic. (n.d) Elastic Search Reference 6.7, Retrieved from
https://www.elastic.co/guide/en/Elasticsearch/reference/6.
7/index.html

3. Magento. (n.d) PHP Developer Guide, Retrieved from
https://devdocs.Magento.com/guides/v2.3/extension-dev-
guide/bk-extension-dev-guide.html

4. Magento. (2019, Feb 01). Index Trigger Events, Retrieved
from https://docs.Magento.com/m2/ce/user_guide/system/
index-management-events.html

5. Magento. (n.d). Indexing overview, Retrieved from
https://devdocs.magento.com/guides/v2.3/extension-dev-
guide/indexing.html

6. Pashkevich, V (2018, November 8) Comprehensive Guide

to Magento 2 Indexing, Retrieved from https://amasty.

com/blog/comprehensive-guide-to-magento-2-indexing/

7. Rehkopf, M (n.d) What is a Kanban board? Retrieved from

https://www.atlassian.com/agile/kanban/boards

8. Santagostino, J (2018, January 20) Newline delimited

JSON is awesome, Retrieved from https://medium.com/

@kandros/newline-delimited-json-is-awesome-8f6259ed

4b4b

9. Saylor, C. (2016, March 02). Elasticsearch Series:

Rebuilding Indices with No Downtime. Retrieved from

https://medium.com/zumba-tech/elasticsearch-series-

rebuilding-indices-with-no-downtime-3498bebbebc

10. Teufel, S (2014) Lecture 1: Introduction and the Boolean

Model [PowerPoint Slides], Retrieved from https://www.

cl.cam.ac.uk/teaching/1415/InfoRtrv/lecture1.pdf

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/index.html
https://devdocs.magento.com/guides/v2.3/extension-dev-guide/bk-extension-dev-guide.html
https://devdocs.magento.com/guides/v2.3/extension-dev-guide/bk-extension-dev-guide.html
https://devdocs.magento.com/guides/v2.3/extension-dev-guide/indexing.html
https://devdocs.magento.com/guides/v2.3/extension-dev-guide/indexing.html

