

26

JIRAE, Vol. 4, No. 1, April 2019, 26-32 DOI: 10.9744/jirae.4.1.26-32

e-ISSN 2407-7259

Creating Domain-Specific Language and Syntax Checker Using Xtext

Billy Jonathan1,2,a, Rafayel Avetyan2,b, Stan Abeln3,c

1Department of Informatics, Petra Christian University, Surabaya, Indonesia
2Information and Communication Technology, Fontys University of Applied Sciences, Eindhoven, The Netherlands

3SW DE SICS Scanner Facilities, ASML Holding, N.V., Veldhoven, The Netherlands
abilly.jonathan97@gmail.com, br.avetyan@fontys.nl, cstan.abeln@asml.com

Abstract. ASML is a company that manufactures the TWINSCAN machine that can produce semiconductor

chips. This machine has a TWINSCAN software installed inside it and that software needs mapping configuration
files to keep it running properly. The configuration files are developed by developers from many departments

within ASML. However, the development process of the configuration files is ineffective, as the developers will

know if there is any defect in the source code only in the late part of the development after all files have been

committed into the TWINSCAN software’s source code archive. It would be better if the developers know if there

is any invalid syntax in the configuration files when they are still creating or editing the files, so they can fix the

defects immediately before the files are uploaded into the source code archive. The main purpose of this research

is to develop a Domain-Specific Language (DSL) based on the structure of the configuration files, and a syntax

checker application that can check the mapping configuration files for the TWINSCAN machine during the

creation or editing phase of those files by the developers. The development of the DSL and syntax checker would

be done using Xtext framework installed in Eclipse Integrated Development Environment (IDE). The final results

show that the DSL and the syntax checker developed using Xtext can detect any invalid syntax during the

development phase of the configuration files, so the developers can fix the defects directly, thus solving the
company’s problem.

Keywords: Domain-Specific Language, Syntax Checker, Parser, Xtext, Eclipse.

1. Introduction

ASML Holding N.V. (ASML) is currently the largest

supplier of lithography systems for semiconductor industries in

the world. It is the creator and manufacturer of the

TWINSCAN machine, which can maximize the productivity

of the lithography systems as well as its accuracy. In ASML’s

TWINSCAN machine, there is a software that drives the

machine, and the software needs configuration files to give

commands to the hardware inside the machine.

Figure 1. ASML TWINSCAN machine

However, because the configuration files are developed by

many developers, and the files have to be compiled, installed,

and tested first, any error in the configuration files are not

reported until they are committed into the TWINSCAN

software’s source code archive and the TWINSCAN software

is started, so the errors are detected late. This kind of workflow

is not effective and time-consuming. The developers prefer to
check the configuration files while they are being created or

edited in the Eclipse IDE instead of checking it later when the
files are already in the source code archive and the

TWINSCAN software starts.

To solve the problem, first, a domain-specific language

(DSL) based on the configuration files’ format has to be made

as the formal language definition for the configuration files’

syntax. Secondly, a syntax checker that corresponds to the DSL

has to be developed for the parser so that it can check for any

syntax error when the files are still being created or edited. The

DSL and the syntax checker can be created using Xtext

framework.

2. Research Overview

2.1 Initial Situation and Problem

The TWINSCAN software’s configuration files are

developed by many developers in ASML using Eclipse IDE.

However, whenever the developers develop the configuration

files, the parser cannot detect if there is an invalid syntax in the

code because Eclipse IDE cannot recognize the format of the

configuration files. Usually, they know that there is any defect
after they commit the configuration files into the TWINSCAN

software’s source code archive installed into the software.

When an error is found, the code has to be edited and

committed again into the source code archive and they have to

start the software again. This kind of workflow is not effective

as it is time-consuming to start the software and find some

errors in the code, then repeat it again and again. It will be much

better if the parser can detect and report any syntax error during

the creation or editing of the configuration files, so the

developers can find out the error and fix it immediately.

Billy J. et al. / Creating Domain-Specific Language and Syntax Checker Using Xtext / JIRAE, Vol. 4, No. 1, April 2019, pp. 26–32

 27

2.2 Research Description and Objectives

The aim of this research is to create a Domain-Specific
Language (DSL) that will become the formal language

definition for the configuration files and to develop a syntax

checker application that can be used during the editing phase of

the files so that there will not be any more syntax error during

the testing phase. The syntax checker will be deployed into two

forms, first as an Eclipse plugin that can be installed in Eclipse

IDE, and second, as a standalone command-line tool that can

be run from a console or a terminal. The DSL and the syntax

checker application will be created using Xtext.

In order to support the DSL and syntax checker

development process, scrum is used as the development
methodology. Scrum is a fast and flexible approach for

software development. It is easy to implement this

methodology in a team and it has low risk since everyone is

aware of any new updates. In scrum, the development process

is split into sprints and in ASML, each sprint consists of 10

working days. It is the department decision in ASML to use

sprints of two weeks, so it allows each team in the department

to synchronize their activities.

2.3 Tools and Programming Language

The following tools and programming language that will

be used for the development process:

1. Xtext framework is used for the DSL and syntax checker

development

2. Xtend programming language is used to develop

algorithms for the syntax checking process.

3. Eclipse IDE is used as the development environment.

4. BitBucket/Git is used as the version control system.

5. Jira software is used as the communication board in scrum

implementation.
6. Collaborators is used for the Code Review process.

3. Research Results

3.1 Comparison of Parser Generators

There are many parser generator applications and

frameworks beside Xtext are available. However, Xtext was

recommended at first for this research because it is Context-
Free Language-based, which is the grammar used to design the

DSL grammar, it can run on Java machine, which can be

integrated easily with Eclipse IDE, it has an IDE that would

make the DSL development easier instead of using console,

and it has Extended Backus-Naur Form (EBNF) as the basic

notation form, which is a popular and common grammar

notation used by many language developers.

There are three other parser generators that meet those

criteria, they are ANTLR, Beaver, and JavaCC. The

comparison between those three parser generators and Xtext

can be seen in Table 1. The table compares if the features

needed in this research are available or not in the parser
generators. “YES” means that the feature is available and

“NO” means that the feature is not available and requires a

third-party program. Based on the research on other syntax

checkers for other types of configuration file in the company,

there are 5 basic features that are needed for the syntax checker

development in this research, these features are needed to

develop the syntax checker in the easiest way and it would be

easy to be developed further by other developers later. The

necessary features are:

• Parser: The main feature used to identify any patterns of the

syntax and keywords to build the AST.

• Generator: Generates the syntax of the DSL.

• Lexer: Analyzing the source code to split the syntax into

keywords or tokens based on the DSL rules and
components.

• Linker: Provides “cross-reference” feature that enables a

component in a rule has a reference to another rule in the

DSL.

• Continuous Integration (CI): This would be used to store

the final products so that they can be taken care of easily by

the developers later.

Table 1. Comparison of parser generators

As can be seen in Table 1, Xtext has the parser, generator,

lexer, linker, and CI support without the needs of a third-party

program. This would make the DSL & syntax checker
development become more efficient as only Xtext is needed to

be installed. Based on the comparison, Xtext had been decided

as the tool would be used to develop the DSL & syntax

checker.

3.2 Installing Xtext and Doing Experiments

Xtext is a framework that depends on Eclipse IDE. It

should be downloaded from Eclipse website and installed as a

plugin on Eclipse IDE. After the installation, a new Xtext

project has to be created and the file extension for the language
has to be specified, then Xtext will generate a default starting

grammar in the text editor. An experiment was done by

creating a dummy DSL and saw the result whether it worked

or not. Errors in the syntax were also created, so that the way

Xtext generates the error alert can be viewed. Figure 2 shows

the default Xtext grammar code.

Figure 2. Default Xtext grammar code

3.3 Configuration Files’ Structure Analysis

All versions of configuration files were downloaded from

the source code archive and analyzed. There are 3 main

 ANTLR Beaver JavaCC Xtext

Parser YES YES YES YES

Generator YES YES YES YES

Lexer YES NO YES YES

Linker NO NO NO YES

CI NO NO NO YES

Billy J. et al. / Creating Domain-Specific Language and Syntax Checker Using Xtext / JIRAE, Vol. 4, No. 1, April 2019, pp. 26–32

 28

versions of the files based on the major difference. Some

important components in the configuration files that exist in all

versions were found, like the header keyword that must exist in

every configuration file and the function name or interface

name as the ASML developers called. These components are

grouped based on their role (e.g. as a keyword, function name,

etc.) and the basic characters like a semicolon or brackets are

also grouped together as terminals. The major difference from

one version to another is the existence of new lines and white

spaces between some components, but the basic code structure
still similar. All these components and specific rules are the

results of the analysis and they were noted to be used in the next

step. However, because of CONFIDENTIALITY ISSUE, the

detail structure of the configuration files cannot be mentioned

in here.

3.4 The Design of the DSL Grammar

Since the configuration files had been analyzed and the

result was put in a note, the grammar design could be created.

Based on a recommendation from an ASML employee, a
research about Context-Free Grammar (CFG) was done. It is a

type of grammar that is used widely by language developer to

convert the rules to a basic grammar for programming

language. Eventually, CFG was decided as the type of

grammar that would be used for the design.

CFG has many notations and forms. A popular notation in

CFG that is often used is the Backus-Naur Form (BNF)

notation. BNF notation is the basic form of the CFG, it is easier

to create a grammar from scratch in BNF notation than in any

other form, so it was decided to design the grammar in BNF

format. The grammar was designed based on the analysis note
created previously. All basic characters were put into terminals

and the rules are put into variables. It was tricky to design the

grammar because there are different versions of configuration

files, but with help from fellow ASML colleagues, the

grammar design could be finished.

After the grammar had been designed in BNF format, the

grammar was converted to a variant of BNF notation which is

called EBNF notation. The reason for this conversion is

because Xtext uses EBNF as its grammar format, so it is easier

to convert the grammar from EBNF to Xtext grammar than

from BNF to Xtext grammar. After some research on a

language developer’s website [9], it was possible to convert the
grammar from BNF into EBNF notation. However, the first

version of the grammar still had many flaws, like an ambiguous

component and incorrect rules for expressions, so the grammar

had to be revised by re-analyzing the configuration files and re-

designing the BNF grammar. Figure 3 shows the grammar in

EBNF format.

The grammar in EBNF notation had to be converted into

Xtext grammar. Since Xtext grammar based on EBNF

notation, there is only a minor difference between both

notations, so it was easy to do. It was decided to call this DSL

as “VPM DSL”, this name was taken from the extension of the
configuration files.

A research was done based on a research journal [11] to

convert the grammar. Because of the minor difference in

between the EBNF and Xtext grammar, there were some rules

that had to be changed again and the EBNF grammar had to be

extended to make it possible to implement in Xtext. This

included separating the EBNF grammar into 3 types of rule,

these 3 rules are the rules category defined in Xtext:

• Parser rule: The rule for the variables or non-terminals.

This rule contains keywords or combination of terminals.

• Enum rule: The rule for enumerations. This rule contains

the operators and signs for the expressions.

• Terminal rule: The rule for the terminals. This rule contains

the basic characters that is impossible to derive further.

Figure 3. The DSL grammar in EBNF notation

The reason for this rule separation is because it made the

grammar cleaner and easily showed the role of each

component and this also made it easier when writing the rules
in Xtext project later.

3.5 Syntax Checker’s General Workflow

Syntax checker depends on the rules and components

created in a programming language. Therefore, in the case of a

DSL, it has to be created first before the syntax checker

creation. A syntax checker usually already installed in a

programming text editor. When the user types something in the

text editor, the syntax checker will automatically start checking

what the user typed by matching the what the user types with

the DSL. The general workflow of a syntax checker application
can be seen in Figure 4.

Figure 4. The general workflow of a syntax checker

3.6 The Design of the Architecture View

After the general workflow of a syntax checker has been

found, the architecture view could be designed. The system in

Billy J. et al. / Creating Domain-Specific Language and Syntax Checker Using Xtext / JIRAE, Vol. 4, No. 1, April 2019, pp. 26–32

 29

ASML environment was analyzed, it connects Eclipse IDE to

its plugin, the source code archive, and its location in the shared

environment in ASML network. This was done to design a

possible architecture view. An architecture view of the syntax

checker that can be applied to ASML environment where the

developers will develop the configuration files has been

designed. The design of the architecture view can be seen in

Figure 5.

Figure 5. Architecture view of the syntax checker

4. Implementation and Test Results

4.1 DSL Implementation

A new Xtext project in Eclipse IDE was created

specifically for this research, then the default Xtext grammar

was replaced with the converted VPM DSL grammar created

before. In this Xtext project, there is a grammar called

“Terminals grammar” stored in Eclipse server and accessed by

Eclipse IDE through Eclipse API. This Terminals grammar

already provides default terminals including comments, white

spaces, and new lines for the existing VPM DSL grammar, so

the basic terminals and rules again for the VPM DSL did not
have to be created.

Since the new Xtext project had been created and ready to

be used, the converted grammar code was written. The

grammar was written in the main Xtext file in the Xtext project.

After the implementation finished, the grammar had to be

tested.

4.2 DSL Unit Test

Before testing the DSL, a test scenario document was

created to list all kinds of tests for the DSL and for the syntax

checker later. Xtext provides an Xtend file that had been

integrated with JUnit library dedicated for unit testing. For the

unit test, the test cases that were related to the DSL were used.

All 26 tests cases for the DSL were written in the Xtend file

and Junit was run. There were several tests that did not pass at
first. From 26 test cases, there are 15 test cases that did not pass,

at the second test, there are 7 test cases that did not pass, and

finally, in the third test, all test cases passed. After all test passed

the Xtext project was compiled and tested manually with the

real configuration files.

4.3 DSL Test with Real Files

After all unit tests were passed, real configuration files were

used to test the grammar. Different versions of the real

configuration files were used to check if the DSL could match
all versions and it worked. If the code did not match the DSL,

an error would occur, prompting the user to fix it. This error

was generated automatically by Xtext because the typed code

from the user did not match the DSL rules. For every version

of the configuration file, the DSL detected the defects correctly.

Since the VPM DSL passed all unit tests and tests with the real

configuration files, the development of the DSL has finished

and it becomes the formal language definition for the

configuration files and the implementation of the syntax

checker can be started. Syntax Coloring Implementation

The developed syntax was decided to be called “VPM
Checker”. The first feature of the syntax checker that would be

created is the syntax coloring. It is needed to give each syntax

a color based on its role in the VPM DSL. For instance, green

color for syntax that has a role as a comment or purple color for

syntax that has a role as a keyword. This will make the

developers would know if the code they typed has the correct

role as they expected or not and they could recognize the code

easier when they are debugging or error checking.

To be able to create this feature, Xtend programming

language is used. Xtend is a programming language specially

used in Xtext which is interoperable with Java programming
language. It has a syntax structure that is similar to Java with

only some minor difference, but it is still understandable. Xtend

will also be used for the other features of the syntax checker.

In order to configure the syntax colors, there are 3 Xtend

files that had to be created. The first file is for the color and style

configuration of each syntax role, the second file is for setting

the color and style for each syntax using lexical or syntactic

analysis, and the third file is similar with the second file, but it

uses semantic analysis to determine the role of each syntax.

The lexical analysis is used because it is the basic and easiest

way to determine the role of each syntax by only checking its

rule and position within the DSL. However, the semantic
analysis is also necessary because there are some syntax roles

that could not be determined by lexical analysis because the

syntax is a combination of some roles with a unique meaning,

so they require the parser to iterate through the AST in order to

find their specific meaning.

The second file and the third file correspond to the first file

in order to find out what color to give to each syntax. Later,

these files would be integrated into Xtext so that the color and

style will appear when the developers open a .vpm file in

Eclipse IDE.

4.4 Syntax Validation Implementation

The next feature is syntax validation. This feature is

extremely important because it would be used to check if the

syntax is valid or not, if it is invalid, they would check the type

Billy J. et al. / Creating Domain-Specific Language and Syntax Checker Using Xtext / JIRAE, Vol. 4, No. 1, April 2019, pp. 26–32

 30

of error or warning in Eclipse IDE, then they would show it to

the user.

The algorithms for checking the syntax validity were

developed by checking the syntax roles against the DSL

structure. When implementing the algorithms, if an invalid

syntax was found, a function to show the error or warning alerts

was called and Xtext would automatically generate a highlight

in the form of a red line under the invalid syntax. This highlight

along with the error or warning alert would appear

automatically in Eclipse IDE when the developers were typing
in the text editor whenever there is an invalid syntax. After

implementing the algorithms correctly in the Xtend file, the

algorithms could recognize the invalid syntax and show the

highlight and the correct error or warning alert.

4.5 Auto-Correct Implementation

The auto-correct feature or “quickfix” as called in Xtext,

provides fix suggestions to the user when there is an error or

warning occurred in order to resolve it. The suggestion given

by quickfix is placed under the error or warning alert and if the

user clicks it, it will automatically implement the fix that would

resolve the error or warning. An error or warning created in the

syntax validation can have one or more quickfixes, but not all

of them need it, depending on the circumstances.

To implement the quickfix feature, algorithms for each
quickfix were created. These algorithms would enable the

suggestions to appear below the error or warning alert in

Eclipse IDE and allows the fix for that error or warning to be

implemented automatically. For example, for an error where

an interface name is not in capital letters, the quickfix for this

error will provide suggestion to the user to change the interface

name letters to uppercase, and when the user clicks this

suggestion, the quickfix will automatically capitalize the

interface name letters. This feature will make it easier for the

developers to fix an error or warning as it provides an automatic

fix, instead of fixing the defect manually.
The algorithms were created by analyzing the source code

structure and find the possible outcome, and then wrote them

in the Xtend source code. Next, a debugging was done to test

the quickfix, this was done until the prefered algorithms were

found. After the algorithms for the quickfixes had been

implemented, whenever the user types an invalid syntax, an

error or warning alert would show up, and if the error or

warning had a quickfix implemented, the fix suggestion would

show below the alert and can be used by the user.

4.6 Syntax Validation Unit Test

Since all features had been implemented, the syntax

checker was ready to be tested. However, the test was only able
to be done for the syntax validation feature, which is the

mandatory feature from the company, due to lack of time. Unit

test was used to test the syntax validation. Using JUnit, and the

test scenarios related to the syntax validation that had been

created previously, the unit test for the syntax validation was

done. There are 15 unit test cases for the syntax validation. At

first 6 test cases were failing, so the validation code was

revised. At the second time, all test cases were passed.

4.7 Syntax Checker Test with Real Files

Since the syntax validation had passed all the unit test

cases, it was decided to use a real configuration file to test the

DSL and syntax checker. the real configuration file source code

was copied to an Eclipse instance generated by Xtext, since the

syntax checker had not been deployed yet. In this example, a

syntax error was made intentionally.

As seen in Figure 10, the syntax coloring worked. It gave

different colors to specific syntax based on their roles. The

syntax validation also worked. It determined the error correctly

and show the error alert along with the syntax highlighting (the

red line below the invalid syntax). Below the error alert, two

quickfixes were available for the user to resolve the error.

When one of those quickfixes was clicked, the assignment

without condition would move after the assignments with

conditions and the error was gone. This means that the syntax

checker works correctly according to the DSL.

4.8 Component Test

After all unit tests were done, a component test was done

to make sure that the four syntax checker components, which

are the DSL matching, the syntax coloring, the syntax

validation, and the quickfix feature, do their job as expected.

The component test was done by creating a new configuration

file and then by typing the syntax to test its features one by one.

For example, the syntax validation component was test by

typing invalid syntax to see if the correct error alert would

appear or not. When there was a mistake, the algorithms were

checked again along with the unit test and then revised.

4.9 Code Review

Since the DSL and syntax checker passed the component

test, a code review was done for all Xtext and Xtend source

code using a tool called Collaborator. This tool is the default

code review tool used in ASML. The source code files were

uploaded and reviewed through Collaborator by two other

developers in ASML and finally, they gave feedback to revised

the source code, then the source code were changed based on

that feedback. After all code passed the code review, the next

step was the user test.

4.10 User Test

The user test is an important part of this assignment as

feedback are needed from the developers who will use this

syntax checker application later. The developers who

understand about the configuration files from another

department were contacted to do the user test. They tried to

create some configuration files in Eclipse IDE using the syntax

checker application.

The result of the user test was very good. The developers

were satisfied with the syntax checker application and they also

gave recommendation for further improvement. After that, the

syntax checker could be deployed.

Billy J. et al. / Creating Domain-Specific Language and Syntax Checker Using Xtext / JIRAE, Vol. 4, No. 1, April 2019, pp. 26–32

 31

 4.11 Eclipse Plugin Deployment

First, the syntax checker should be deployed as an Eclipse

plugin so that the developers from the other departments can

use it in Eclipse IDE. However, the deployment of the plugin

has to be done by another team within ASML. The person in

charge from that team was contacted and he agreed to do it.

After the deployment finished, he installed in Eclipse IDE so

that it can be used by ASML developers.

 4.12 Standalone Command-Line Tool Deployment

Unlike the deployment of the Eclipse plugin in the previous

sub-chapter, which has to be handled by another team, the

deployment of the standalone command-line tool can be done

without their help. Xtext allows the developed syntax checker

to be exported as a standalone command-line tool in the form

of a jar file. The compiled jar file was exported and could be

used directly. However, using the jar file directly would be

inconvenience for the developers, as it could not have multiple

files checked together in one command and it also has an

unclear message if there is no error in the file. Because of that,

a bash file was created so that it would run the jar file with a

nice customize messages shown to the developers when they

wanted to run the jar file.

Multiple files checking could also be done directly through

one command. The command to run the bash file is also shorter

than the command to run the jar file directly. In this way, the

developers only need to run the bash file when they want to use

the standalone command-line tool. In the end, the bash file was

created successfully. A command option about the usage

instruction is also written in the bash file so that the developers

can see how to use the standalone command-line tool. Next,

both forms of the deployed syntax checker were tested by

creating new configuration files.

4.13 Deployed Syntax Checker Test

Next, some new configuration files were created in Eclipse

IDE with the Eclipse syntax checker plugin installed. Some

errors were made intentionally to check if the syntax checker

plugin worked correctly or not. The result is good, it can check

all the defects immediately when the syntax was typed.

The newly-created configurations files with some defects

were saved and then he standalone command-line tool was run

to check the configuration files. This would show if the

standalone command-line tool worked correctly or not. The

result is the same with the Eclipse syntax plugin, proving that
it worked correctly.

4.14 Checking Process in the Source Code Archive

For the last step, the new configurations files were

committed into the source code archive, then they were

checked over there using a tool called CWBD plugin, which is

a standalone command-line tool developed to check the

uploaded .vpm files. It is usually used by the developers to

check the configuration files in the late part of the development.

CWBD plugin is much more advanced than the syntax checker

developed in this research, as it not only checks the syntactic

part of the configuration files, but also the semantic part while

the syntax checker in this research can only check the syntactic

part. Figure 6 shows the checking process of the configuration

files syntax using CWBD along with the checking result.

Figure 6. The checking process using CWBD plugin

In Figure 6, there is an error: “VPME file is not a

DATTARGET” generated by the CWBD plugin.

DATTARGET usually generates and lists all configuration

files for the TWINSCAN machine. This error occurs because

the new files that were created and uploaded were not listed yet
in the DATTARGET, but this error is not related to the syntax

of the configuration files, so this is not a syntactic error. As can

be seen, there is no other error beside the DATTARGET error,

so this means that the syntax checker application in this

research worked as the checking process is successful.

5. Conclusion and Recommendation

During the research and implementation process, the DSL

and syntax checker application worked as expected. The DSL

has become the formal language definition of the configuration

files. The deployed Eclipse syntax checker plugin can detect

any invalid syntax in the configuration files when the user

create or edit the files. Also, the deployed standalone syntax
checker command-line tool can check multiple files directly

through the console or terminal.

After the configuration files were checked using the

deployed syntax checker and committed into the source code

archive, there was no more syntactically invalid syntax in the

files as all syntactic error had been detected and fixed using the

deployed syntax checker. This means that the company’s

problem has been solved by the DSL and syntax checker

created in this research.

For further research, the DSL grammar can still be

extended for supporting more advance syntax checking

process. Also, a semantic check is also a good idea to be added,
as the syntax checker in this research currently only able to do

the syntactic check. Xtext is also a very good and powerful

framework for language development and it can be used again

in the future.

References

1. ASML: About ASML - Organization. (2018). Retrieved

from https://www.asml.com/company/organization/en/

s277?rid=51984

2. ASML: About ASML - Our history. (2018). Retrieved

from https://www.asml.com/company/our-history/en/

s277?rid=51985

3. Beaver - a LALR Parser Generator. Retrieved from

http://beaver.sourceforge.net/index.html

4. Bettini, L. (2016). Implementing Domain-Specific
Languages with Xtext and Xtend - Second Edition (2nd

ed.). Packt Publishing.

Billy J. et al. / Creating Domain-Specific Language and Syntax Checker Using Xtext / JIRAE, Vol. 4, No. 1, April 2019, pp. 26–32

 32

5. Efftinge, S., & Spoenemann, M. Xtext - Language Engi-

neering Made Easy!. Retrieved from https://www.eclipse.

org/Xtext/

6. Efftinge, S., & Spoenemann, M. Xtend - Modernized Java.

Retrieved from https://www.eclipse.org/xtend/

7. Electroiq.com. (2018). ASML increases its dominance of

semiconductor lithography market in 2017 | Solid State

Technology. [online] Available at: https://electroiq.com/

2018/02/asml-increases-its-dominance-of-semiconductor-

lithography-market-in-2017/ [Accessed 5 Jul. 2019].

8. JavaCC. (2019). Retrieved from https://en.wikipedia.org/

wiki/JavaCC

9. Lee, X. (2018). What's the Difference Between BNF,

EBNF, ABNF?. Retrieved from http://xahlee.info/parser/

bnf_ebnf_abnf.html

10. Suranga, S. (2018). Build your own programming langu-

age with ANTLR. Retrieved from https://medium.com/

@shalithasuranga/build-your-own-programming-

language-with-antlr-5201955537a5

11. Yue, J. (2014). Transition from EBNF to Xtext.

