

51

JIRAE, Vol. 4, No. 2, October 2019, 51-56 DOI: 10.9744/jirae.4.2.51-56

e-ISSN 2407-7259

Job Management System for Cell Monitoring Services

Harry Ariyanto Putra

Department of Informatics, Petra Christian University, Surabaya, Indonesia

Information and Communication Technology, Fontys University of Applied Sciences, Eindhoven, The Netherlands
harryariyantop@gmail.com

Abstract. OWOW is a digital agency which operates in the context of software development, design, and digital

marketing. One of the key services it provides is full-stack web development. OWOW separates its full-stack web

development into back-end and front-end. OWOW had done some automated testing in back-end, but none in

front-end. This was not ideal because the quality of web apps developed could not be easily and thoroughly ensured.

OWOW believes Test Driven Development (TDD) might be the solution for the situation. TDD is a software

development process where test code is written before the implementation code. Through this research, OWOW

would like to start applying TDD into its full-stack web development. Research had been done to investigate how

to apply TDD in OWOW’s current workflow. In the research, the TDD approach was defined. Afterwards, its

application on current back-end and front-end development was investigated. Furthermore, its relation to

Continuous Integration was explored. The research findings were then implemented on an ongoing web app project

called RentIt. This implementation had been delivered as a proof-of-concept application of TDD in OWOW’s full-

stack web development. It is concluded that OWOW had been introduced to apply TDD in its full-stack web

development.

Keywords: Tracking, management system, azure, processes, cloud.

1. Introduction

Cells have always been mysterious. They are the smallest

unit of life and each of them is a separate individual. CytoSmart

has developed a device called the Omni to help reduce the task

of the cell researchers. The Omni provides high-quality images

of the cells cultures (snapshots) and stores them in the cloud

environment, where the images will be processed with

algorithm selected by the user. The result, which consists of cell

images processed by the selected algorithm and its related

information, then will be available to the user. All these

processes run in the cloud without any means to track and

observe them. The stored information was scattered in the

cloud storage. The operational team needs to gather and join

the scattered information in the cloud manually to make a

conclusion and to understand what happened to a specific

process. Not only this action was redundant, as the operational

team did this for each of the process, it was also becoming more

difficult as the complexity and the size of the information in the

cloud grows. Another problem that the current cell processing

services has is that re-doing the experiment must always start

from the beginning, which makes it time-consuming and less

accurate since some time has passed and the cell might not be

in the condition that the researcher desired anymore.

These reasons are why the Job Management System is

required. The system will provide a way to track and manage

the process that is happening in the cloud and provide an ability

to re-do the experiment. Well implemented management

system can increase company performance, by reducing

maintenance cost [5] and execution time, while using the

optimum value [11].

This paper describes the Job Management System that was

implemented for the cell processing services and the researches

that were done to achieve the desirable outcome.

2. Research Results

There are several research works that needs to be worked
on before solving the problem. Those work items are defined
as sub-points following this paragraph.

2.1 Omni Workflow

The whole procedure was started by customers filling the
required parameters, such as algorithm and interval of the
scans, into a software application provided. Then, the Omni
starts taking snapshots and send them to the cloud.
1. After all the snapshots are received, the snapshots are

combined into one big image (Stitching)
2. Depending on the type of the well plates, the wells are

extracted into another set of images, which only contain
one well per image (Well Detection)

3. The images will be processed based on the algorithm
selected by the customers.

4. The results are stored in the cloud. The customers can
access the result from the specified website.

5. The experiment continues to run until the customers stop it
manually.

Internally, the process of receiving the snapshots is called
Receiving, the process of stitching and well detection
considered as Preprocessing, and the process of running the
algorithm on the images is called Processing. These processes
make up one scan. One experiment consists of multiple scans.

2.2 Current Workflow Problem

Wisdom can be achieved after proper amount of
knowledge obtained from meaningful information provided
[1]. Only by obtaining wisdom and knowledge regarding what
is the situation in the cloud, the problem can be solved
correctly, as the person truly understand the problem and then
the solution can be provided.

Harry A.P. / Job Management System for Cell Monitoring Services / JIRAE, Vol. 4, No. 2, October 2019, pp. 51–56

 52

Figure 1. Current Omni Workflow

The workflow implemented was rigid and could not

support features that the company wanted to introduce. The

company would like to introduce the re-do (or can also be

called as reprocess) feature, which enables the customers to re-

do their past experiment, and also the area selection, which

enables the customers to analyze the images based on their own

custom area, instead of the whole well plate. In general, these

are the problems with the current system:

1. The data of the previous scan will be overwritten if the

reprocess feature is being run

2. Can’t accept custom area(s), which the customer desire

greatly

3. Can’t change the algorithm after the experiment starts.

For the desired workflow (shown in Figure 2), the com-

pany wants to add another flow as an addition to an existing

one, where the customers can select their own areas to process.

The company already defined and decided to go with the

desired workflow to support its newly added features,

reprocess and area selection.

Figure 2. Desired Workflow

2.3 Job Management System

The Job Management System was defined to solve the

current workflow problem. Job is the link between the required

entities. There are three types of job that were used. They are

scan job, area job, and experiment job.

1. Scan job is a link between the scan and the result of each

scan’s images that are processed based on the selected

algorithm. This way, reprocess feature can be supported,

since now rather than only one result, each scan can have

multiples results, and the data will not be overwritten. After

the reprocess feature is enabled, the customers now have

the ability to change the algorithm when they reprocess

their experiment.

2. Area Job is a link between scan job and the area selected

by the customers using area selection features. This way,

the customer can specify more than one area, on which part

of the well plates they want to process.

3. Experiment Job provides a link between an experiment and

each scan job its related to. Experiment job can give an

overview of how scan jobs progress over time.

Figure 3. Relation between Job and current workflow

2.4 Tracking Scope

The scope of the tracking included the three main

processes, which consist of receiving, preprocessing, and

processing. These processes run on a cloud environment,

where for every main process, the state of each scan and

experiment are collected to a different type of databases/

storages. The status of the Omni devices itself also needs to be

tracked to make sure that the devices are working properly.

Besides that, Azure service bus, which serves as a messaging

platform between processes, also needs to be tracked.

Figure 4. Tracking Scope

2.5 Application Frameworks

Back-End Framework

There are several criteria that needs to be fulfilled to decide

the best framework for the system:

Harry A.P. / Job Management System for Cell Monitoring Services / JIRAE, Vol. 4, No. 2, October 2019, pp. 51–56

 53

BE1 Must be a .Net-based framework

BE2 Already used by the company

BE3 Supports multi-platform (Windows, MacOs, and Linux)

BE4 Should be easy to maintain

BE5 Must have a high-performance rate

Based on criteria BE1, the choices are already limited to

two options, which are:

a. .Net Framework

b. .Net Core

Criteria BE2 is not enough to decide which framework to

be used since both are being used. When it comes to the third

criteria (BE3), .Net Core has the ability to support cross-

platform integration [6], whether it is for the application itself

or its development environment. This means that .Net Core

application can be run and build on multiple operating systems,

such as MacOS and Linux, where .Net Framework couldn’t.

For the BE4, both of the options provide an easy way to access

and maintain the packages and library needed for development.

By using NuGet [10], a free and open source package manager

owned by Microsoft, both of the web framework can be easily

maintained and updated.

Figure 5. Top 10 Framework

Meanwhile, for the criteria BE5, .Net Core wins over .Net

Framework by a large margin. On October 2018, Tech

Empower (https://www.techempower.com), was running its

17th benchmark test for web frameworks. Based on a simple

test, where the frameworks responded with a “Hello, World”

message rendered as plaintext, .Net core, represented by

‘aspcore’, able to secure its seat on top 10 (Figure 12) with

around 7 million response per second and with performance

rate 99,7%. Meanwhile, .Net Framework, represented by

‘aspnet-mono-ngx’, only got the 285th place with around 5

thousand requests per second and performance rate around

0,1%.

Figure 6. .NET Framework Position

As a result, the following table can be deducted (See Table
1) and .Net Core was chosen.

Table 1. Back-End Framework Comparison

 .NET CORE .NET FRAMEWORK

BE1  

BE2  

BE3  

BE4  

BE5  

Front-End Framework

There are several criteria needs to be addressed based on
initial application design:
FE1 Used by the company
FE2 Maintainable
FE3 Lightweight
FE4 Has its own documentation
FE5 Component-Based Implementation

Based on FE1, the following alternatives were considered:

a. Pure JavaScript

b. Vue.js

c. React.js

d. jQuery

After conducting testing and prototyping on the

alternatives mentioned above, Pure JavaScript and jQuery

were not able to achieve the result needed for seamlessly

displaying the necessary job information and handling the

event triggered by certain activities, such as click action,

between the time frame provided. In addition, these options

will make the code less maintainable and hard to customize at

later date (FE2). Regarding the size of the framework (FE3),

results fetched from one of GitHub Repositories showed that

Vue.js is the lightest one compared to other options [12].

Meanwhile, for the documentation (FE4), each option has its

own documentation that can be accessed from the web, even

some of them have tutorials. For the last requirement, most of

the modern frameworks, such as Vue.js and React.js, support

component-based implementation [9] (FE5), where the web

component is reusable and can be easily integrated. The result

of the research can be found in Table 2.

Table 2. Front-End Framework Comparison

 Pure

JavaScript

Vue.js React.js jQuery

FE1    

FE2    

FE3 N/A 58,8 KB 97-133
KB

82,34KB

FE4    

FE5    

From Table 2, it can be observed that Pure JavaScript is not

an option anymore when developing a complex application on

the web. It needs help from a pre-set modern JavaScript

framework so that the requirement can be fulfilled. In addition,

due to its lack of maintainability and component implemen-

tation support, jQuery also is not an option. Between Vue.js

and React.js, since Vue.js is the lightest, Vue.js was chosen.

Harry A.P. / Job Management System for Cell Monitoring Services / JIRAE, Vol. 4, No. 2, October 2019, pp. 51–56

 54

2.6 Reprocessing

Re-do/Reprocessing is an ability to re-do the experiment or
scans that had been done in the past. Reprocessing is important
because it makes it possible to re-run a past experiment with a
new algorithm using the same subject/cell cultures. This
enables the customer to have another result from their past
experiment. This functionality can be done by using the service
bus to send a message to redo the experiment/scan to the
preprocessing function. The message contain parameter
needed to re-do the experiment such as the new algorithm that
will be applied.

3. Implementation Results

The result of implementation is divided into 2 part based
on its tracking scope, The Omni and The Cloud Environment.
After the tracking system was done, it was followed by the
implementation of the ability to reprocess experiments and
additional features that can be added to enhance the application.

3.1 The Omni

Omni devices that are used to run the experiments need to
be tracked since the whole process begins with the Omni
uploading snapshots to the cloud and triggers the receiving
process. The Omni produces log records that are stored on Log
Analytics, each with its own timestamp and content. The
record saved inside Log Analytics can be accessed by making
an API calls with the required credentials to the Azure [3]. A
sub-system was created to track this process, which contains
the list of devices involved with an experiment and the log they
generated during the receiving process.

3.2 The Cloud Environment

The cloud environment is where all the main processes of
the Omni (receiving, preprocessing, and processing) happens.
The communication between each process are supported in the
cloud by using messaging services provided by Azure called
Azure Service Bus [4]. To summarize it, for every main
process, the status of the process that happens for the specified
scan will be saved on a different type of databases which have
their own functionality. To track what happened in the cloud
environment, saved record from the databases can be utilized.

Experiment Table

For a better insight and a higher level of understanding of
what is happening in the cloud, a new table which contains the
list of experiments, where each experiment contains multiple
scans, and each scan record contain a deeper insight, was
added. The record needed was stored in Azure SQL Databases.
During the implementation, it became clearer that a compo-
nent-based structure for each table/item on the page would be
more efficient and maintainable since the component can be re-
used later. A system displaying the experiments and their
details was created.

Figure 7. Experiment’s detail

User Alert Table

This table’s purpose is to display a list of messages or alert
sent to the user regarding their experiment. The user also wants
to see the scans record related to the specified alert. The reason
why this table is needed is that the company wants to know
whether the owner of the experiment is alerted if there is
something wrong with their experimentBy utilizing the
component that was made by before, alerts record can be
displayed.

Service Bus Messages Table

In the cloud environment, communication between each
process is handled by a messaging service provided by Azure,
which is Azure Service Bus. Then, the next item to be tracked
are the messages that are currently available on the queue
available on the Azure Service Bus. The reason why this
feature is needed because these queues serve as a way of
communication between processes that are happening in the
cloud. So, to know how many messages are currently waiting
to be processed and also how many messages that can be
retrieved is crucial for the company, since this way they can
keep watch on what is the status of their communication
infrastructure. After researching on how to fetch the data from
the documentation of Service Bus feature provided by Azure
[7], a sub-system, which contains lists of each queue available
and the number of messages inside, either it is active or not,
was created.

Container List Table

Most of the processing in the cloud happens in an isolated
environment called container. These containers will be run
when there is an image analysis process needs to be done and
will be closed when there is none. Then, to make the tracking
system more robust, the Container List table was made.
Container List Table shows all the container that is currently
running in the cloud and its detail/log. This table is needed to
check if the container is running or not, and what are the logs
that are being created when the container is running.

Cloud Orchestrarion Table

In the cloud environment, Log Analytics, a monitoring

system provided by Azure, tracks and keep records of what is

happening in the cloud environment as a whole. Retrieving the

record saved by Log Analytics is very important since all of the

logs generated during this process gives a first-hand insight

regarding the process itself in the cloud. The record provided

here covers all of the process (Receiving, Preprocessing, and

Processing). But since there is a lot of records being generated

at the same time and it takes a lot of time to fetch all of them,

the company only wants to fetch the logs that contain error on

it.

3.3 Reprocessing functionality

Reprocess is an ability to re-do an experiment that had been

done in the past. By sending a customized message through

API calls to Azure Service Bus [7], the functionality can be

implemented. For testing purpose, Postman [2], an API

Development Tools, was used to check whether the calls

already has the correct parameter or not.

Harry A.P. / Job Management System for Cell Monitoring Services / JIRAE, Vol. 4, No. 2, October 2019, pp. 51–56

 55

Figure 8. Error log fetched from Azure

3.4 Additional Features

During the implementation, several additional features

were added to improve the application

Sort and Filtering

During the implementation, it was very hard to get a

specific record. Since there was no way to group them and get

only the wanted record. It was also difficult to search the record

needed since the record was randomly fetched from the

databases without proper ordering being set in place. So to

counter the problem, a way to sort and filter the record was

proposed. There were several solutions that were proposed to

the company:

1. Both sort and filtering are done on the back-end and can be

applied by API call

2. Sort happens on front-end side and filtering happens on

back-end side

The second option was selected since sort features can be

done by using Vue.js on the front-end and will reduce the time

needed to fetch the data from the database.

Page Loading Speed Optimization

During implementation, whenever the application restarts

or being refreshed on the web browser, the application took

quite some time to fetch the data and populate the table. After

doing some testing on Chrome [7], the concern was true. The

reason this problem happened is that every time the page is

loaded, it will fetch all the record from the database. To counter

this problem, another parameter to the API call was added. This

parameter decides the amount of record fetched, where only a

selective amount of record will be fetched at first, and then the

user can choose to show more of the record. As a result, with

the same amount of requests, load time of the application

decreased by 28 % (see Figure 9).

4. Conclusion

Cytosmart has developed a device called Omni, which has

the ability to analyze cell cultures. Omni takes multiple images

of cells and then process them according to an algorithm

selected by users. Right now, the company does not have any

solution to track the progress of each scan, which consists of

the processes, that happens in the cloud and needs to dive into

the related databases directly to know if the related processes

failed or not. Besides that, to re-do the scan, the company needs

to alter the databases directly and re-do the whole scan,

including all its process, from scratch.

Figure 9. (top) Before optimization. (bottom) After

optimization

To reduce the workloads of the operational team, a Job
Management System was implemented, which was achieved
by creating a web application to track the process that happens
in the cloud and implements the ability to re-do the scan, failed
or not.

By collecting information about the processes that happen
in the cloud, technologies used by the company, and how to
access the data related to the processes from the databases, the
implementation of the job system and its reprocess func-
tionality was implemented successfully. The status of the scans
and their individual process were displayed. Furthermore, the
logs record from the Omni devices was shown and the
reprocess functionality was implemented successfully. To
enhance the application, several additional features were
added.

In the end, the goal of the assignment was achieved. The
web application created provides a way for the company to
track what happens in the cloud and reprocess a specific scan
without the necessity to access the databases directly.

References

1. Ang, R. J. (2019). Use of content management systems to
address nursing workflow. International Journal of
Nursing Sciences, 6(4), 454–459. doi: 10.1016/j.ijnss.
2019.09.012

2. API Development Environment. (n.d.). Retrieved May
06, 2019, from https://www.getpostman.com/

3. Azure Log Analytics REST API. (n.d.). Retrieved May
02, 2019, from https://dev.loganalytics.io/

4. Azure Service Bus-Cloud Messaging Service | Microsoft
Azure. (n.d.). Retrieved May 02, 2019, from https://azure.
microsoft.com/en-us/services/service-bus/

5. Chen, C., & Tang, L. (2019). BIM-based integrated
management workflow design for schedule and cost
planning of building fabric maintenance. Automation in
Construction, 107, 102944. doi: 10.1016/j.autcon.2019.
102944

6. Choose between .NET Core and .NET Framework for
server apps. (2018, June 19). Retrieved April 30, 2019,
from https://docs.microsoft.com/en-us/dotnet/standard/
choosing-core-framework-server

Harry A.P. / Job Management System for Cell Monitoring Services / JIRAE, Vol. 4, No. 2, October 2019, pp. 51–56

 56

7. Chrome Dev Tools | Tools for Web Developers | Google

Developers. (n.d.). Retrieved May 06, 2019, from

https://developers.google.com/web/tools/chrome-

devtools/

8. Get started with Azure Service Bus queues. (2019, April

10). Retrieved May 03, 2019, from https://docs.microsoft.

com/en-us/azure/service-bus-messaging/service-bus-

dotnet-get-started-with-queues

9. K&C Team. (2019, February 08). Angular vs. Vue vs.

jQuery vs. React vs. Ember. Retrieved April 30, 2019,

from https://kruschecompany.com/blog/post/ember-

jQuery-angular-react-vue-what-to-choose

10. NuGet Gallery | Home. (n.d.). Retrieved April 30, 2019,

from https://www.nuget.org/

11. Serhani, M. A., El-Kassabi, H. T., Shuaib, K., Navaz, A.

N., Benatallah, B., & Beheshti, A. (2020). Self-adapting

cloud services orchestration for fulfilling intensive

sensory data-driven IoT workflows. Future Generation

Computer Systems, 108, 583–597. doi: 10.1016/j.future.

2020.02.066

12. Sizes of JS frameworks, just minified + minified and

gzipped, (React, Angular 2, Vue, Ember). (2019, April

23). Retrieved April 30, 2019, from https://gist.github.

com/Restuta/cda69e50a853aa64912d

