
JIRAE, Vol. 3, No. 2, October 2018, 79–85 DOI: 10.9744/JIRAE.3.2.79-85

e-ISSN 2407-7259

79

Game Popularity Tracking System

Joseph Alexander Budiarto

Department of Informatics, Petra Christian University, Surabaya, Indonesia
Information and Communication Technology, Fontys University of Applied Sciences, Eindhoven, The Netherlands

budiartojoseph@gmail.com

Abstract. The purpose of this research is to develop a game popularity tracking system that can
generate popularity values once every 24 hours using daily data from Google Analytics. Within the

scope of this project, game popularity is defined as the fact that the quality of a certain game is liked

by many people. There are 5 metrics that can be used to calculate game popularity: users count,

unique page views (UPV), average time on page (ATP), the difference of unique page views, and

average time on page from the day before. To generate the popularity values daily, the combination of

weighted average, exponential moving average, and exponential smoothing algorithm are used. The

final result of this project is a service that can run automatically and also provides an HTTP API that

could fetch popularity values of games from gaming sites, sending the data in XML format for other

services to use when needed. The service is built using Node.JS and other in-trend technologies such

as Google Analytics API v4, OAuth 2.0, Express.JS, etc.

Keywords: Game Popularity, Popularity Algorithm, Google Analytics, Node.JS, HTTP API

1. Introduction

Over the centuries, technologies have grown

rapidly. Perhaps one of the greatest technological

discoveries is the Internet. In the world today, the

Internet has become one of the biggest platforms for

people to interact with one another. Moreover, almost

everything relies on the Internet nowadays. The Internet

is inevitable as there are many things that people can
find across the Internet, starting from knowledge,

businesses, entertainment and much more.

Entertainment on the Internet has strong relations with

advertising. The common practice is that businesses

will earn revenue from ads placed on their websites. In

order to do that, they need a noticeable amount of

traffic, which will attract advertising companies to

place ads on their websites. The main purpose of

making a popularity tracking system is to offer popular

games for users to make it more comfortable for users

to find which game is liked the most within a certain

gaming site. The main task of this project is to propose
and create a new popularity tracking system that can

update a game popularity value automatically every

day.

2. Research Results

The research phase of this project is divided into

several stages. The first stage is to look into what the

definition of ‘game popularity’ really is. After the

definition is known, the research phase can continue to

figure out what metrics to use, which data to collect in

relation to the chosen metrics, and what algorithms to
use for this project.

2.1. Game Popularity Definition

Popularity, as defined in Cambridge Dictionary, is

the fact that someone or something is liked and/or

supported by a lot of other people [1]. Gananath and

Sreenath [2] described popularity as the quality of being

liked or accepted by people. Based on these two

definitions, game popularity can be defined as the fact

that the quality of a certain game is liked by many
people, which means it is safe to assume that popularity

has something to do with the users and/or customers.

2.2. Metrics Used for the Calculation

According to Trevor McCalmont [3], there are 15

metrics that can be used to measure the quality of a

game. He divided the metrics into 3 categories: basic,

monetization, and in-game metrics (shown in Table 1).

Table 1. General game metrics

Categories Metrics

Basic

Daily Active Users (DAU)
Monthly Active Users (MAU)
Sessions
Retention Rate

Churn Rate
Ratio of DAU to MAU

Monetization

Conversion Rate
Avg. Revenue per Daily Active User (ARPDAU)
Avg. Revenue per Paying User (ARPPU)

In-Game

Source

Sink
Flow
Start
Fail
Complete

Budiarto, J. A. / Game Popularity Tracking System / JIRAE, Vol. 3, No. 2, October 2018, pp. 79–85

80

The metrics defined by Trevor McCalmont that

correspond to the popularity of a game are the basic

metrics. Other than that, according to Gaurav Bagur [4],

the number of users giving ratings and the actual value

of those ratings itself can be used to measure the

popularity value of a game.
The metrics in Google Analytics are clustered into

33 categories: User, Session, AdWords, Page Tracking,

etc [5]. The category that can be used for this project is

the Page Tracking category. The metrics available

under the Page Tracking category are Page Value, Page

Views, Unique Page Views, Average Time on Page,

etc. The rest can be seen in Figure 1. Other than these

metrics, Average Session Duration and Bounce Rate are

also taken into consideration.

Figure 1. Google Analytics dimensions and Metrics [5]

To summarize the findings from the previous steps,

the general game metrics to be used are: DAU, MAU,
Session, Ratio of DAU to MAU, Retention Rate, Churn

Rate, and lastly User Ratings. The User Rating used in

this project consists of the accumulation of counts and

stars given by users. The metrics of Google Analytics

most likely to be used are the ones under Page Tracking

category, Average Session Duration, and Bounce rate.

When relating the two findings, it can be assumed as

such: Daily Active Users (DAU) corresponds to Unique

Page Views, Sessions corresponds to Average Time on

Page (ATP) or Average Session Duration, and Churn

Rate corresponds to Bounce Rate. Out of the four
Google Analytics metrics mentioned, Average Session

Duration and Bounce Rate CANNOT be used to

calculate the popularity score, because these two

metrics are not bound to only one web page. There are

2 other metrics that can also be used to calculate the

daily popularity value. When looking into daily changes

of popularity, the difference between today’s and

yesterday’s data is also important. For example, if a

game has a huge positive difference of user playing

today compared to the previous day, then we can

assume that the game is popular today. To conclude

everything, here are the metrics that will be used to

calculate the new popularity value of games:

1. User Rating Count

2. Unique Page Views (Google Analytics Metrics)

3. Average Time on Page (Google Analytics Metrics)

4. Difference of Unique Page Views (Diff UPV)
5. Difference of Average Time on Page (Diff ATP)

2.3. Data Validity

The data acquired from Google Analytics are NOT

100% valid. According to Ryan Chase [6], there are

several reasons as to why Google Analytics data are not

100% accurate, and never will be. Below are the three

main factors that can affect Google Analytics data

validity:

1. Implementation error

Implementation error can be in the form of
including the script twice in one page or other

errors. However, the implementation of Google

Analytics is not part of this project and will not

be discussed further.

2. Google Analytics’ sample data

When Google Analytics does not have enough

data, it uses sample data to calculate the value of

certain metrics. Even though the accuracy of

those sample data can be set manually, it is still

not real data which is why the result will never

be valid.

3. Disabled JavaScript & cookies, and ad-blocks
The third reason is because some users that visit

the sites sometimes disable their JavaScript

and/or cookies, and sometimes also uses ad-

blocks. This causes Google Analytics to fail

when trying to track the data from users.

According to Matthew Cortland [7], in 2017

11% of users worldwide actually use ad-blocks.

In 2016, Andrzej Winnicki [8] from Yell – UK’s

leading online business directory – conducted a

research and found out that only 0.07% of users

from Yell.com disabled their JavaScript and
0.2% didn’t allow cookies.

In conclusion, after seeing all the facts above, the

data acquired from Google Analytics is NOT 100%

valid because some of the factors are outside of this

project’s scope and control.

2.4. Algorithm Research

There are 12 algorithms in total that came up after

searching for several references on how to calculate

popularity of a game from the Internet: Those are the

Wilson Score Interval, the Elo Rating System, Rank

Product, Exponential Moving Average, Weighted
Average, Weighted Moving Average, Exponential

Weighted Moving Average, Bayesian Average,

Normalization, Euler’s Number, Exponential

Smoothing, and Cross Multiplication. It is important to

note that not all the algorithms above can be used to

calculate a popularity value. Some of them are excellent

Budiarto, J. A. / Game Popularity Tracking System / JIRAE, Vol. 3, No. 2, October 2018, pp. 79–85

81

for generating rating scores, some can be used to

generate the game rankings, etc. The final algorithm

used to calculate the popularity value is a combination

between Weighted Average (WA) and Exponential

Moving Average (EMA), and Exponential Smoothing

to scale the EMA result so it ranges from 0 – 100.

2.4.1. Weighted Average

 (1)

The way the weighted average works is by

multiplying the data from one metric with its preset

weight. Then, all the multiplication result is summed

and divided by the total weight. For an example: game

A has X and Y as metrics. The data and weights for each

metric are as follows: WX = 3; X = 5; WY = 1; Y = 7. The

weighted average of Game A can be calculated as:

2.4.2. Exponential Moving Average

EMAtoday = EMAyesterday + α [WAtoday – EMAyesterday] (2)

 α = (2 (N + 1)) (3)

After the weighted average has been calculated, the

time factor is taken into account. The bigger the N, the

smaller the data difference will be, and vice versa. For
an example: continuing from the previous example, if

Game A has yesterday’s EMA value EMAyesterday = 8,

and N is set to 28, then the next step of calculation is:

2.4.3. Exponential Smoothing (Modified)

 0 = . 0) . 1000 (4)

 = .) . (5)

 (where 0 < < 1)

The result of this calculation is not used for the next

day popularity calculation. The sole purpose of this

algorithm is just to smooth the popularity value so it is

presentable for the users. For an example: previously,

Game A’s EMA value for today is 7.83. If Game B’s

EMA value for today is 8, then Game B will be placed
above Game A. Thus, Game B’s EMA value will be

used as 0, and Game A will be 1. If the is set to

0.0005, the calculation process is:

To make it range from 0 – 100, the result will then
be divided by 10. By doing so, Game A’s popularity

value is 100 and Game B’s popularity value is 99.9.

The smoothing results before divided by 10 are the ones

used for the next game smoothing calculation, while the

division-by-10 results are used to present the popularity

value for the users. It is important to note that there are

several constraints when using this algorithm:

1. All metrics used for the calculation have to be

normalized.

2. When the algorithm is used for the first time, the

weighted average result is set as the initial

popularity value; i.e., .

3. There is no default popularity value for a newly

published game.

4. There is a User Rating Limit when calculating

the Weighted Average.

2.5. Algorithm Customization

One of the advantages of using Weighted Average

to calculate the popularity value is that by setting the

weights differently, the calculation results will vary,

depending on how much weight is assigned to each
metric. The damping factor (1 − α) of Exponential

Moving Average algorithm can also be customized. The

larger the damping factor, the less varied the results will

be, and vice versa. These settings were made so that the

algorithm can be tailored and produce different sets of

results. It can also be useful for future development, for

example, adding or removing metrics used in the

algorithm. Three predetermined settings that can be

used to get different sets of results are shown in Tables

2 to 4.

Table 2. Set 1

No. Metrics Weight

1. Users Count 3
2. UPV 5
3. Difference of UPV 0
4. ATP 1
5. Difference of ATP 0
6. N 28

Table 3. Set 2

No. Metrics Weight

1. Users Count 3

2. UPV 5
3. Difference of UPV 1
4. ATP 1
5. Difference of ATP 1
6. N 28

Table 4. Set 3

No. Metrics Weight

1. Users Count 3
2. UPV 5
3. Difference of UPV 2
4. ATP 2

5. Difference of ATP 1
6. N 2

2.6. Decisions

After looking into each of the algorithms and its

endless possibilities, in the end, some decisions need to

be made. Below can be found the summarized decision

points of the algorithm research phase:

Budiarto, J. A. / Game Popularity Tracking System / JIRAE, Vol. 3, No. 2, October 2018, pp. 79–85

82

1. Before calculating the Weighted Average, the

data are normalized.

2. The weight of each metric can be customized.

3. Exponential Moving Average deals with the

time factor when generating the new popularity

value.
4. Exponential Smoothing will scale the EMA

results so it ranges from 0 – 100 with 1 fraction

digit.

5. The EMAtoday value is the one being used for the

next day’s popularity calculation.

6. The algorithm is designed to have minimal

change, so initial popularity value can be

customized and, in the end, it affects the final

calculation results.

3. Implementation Results

Figure 2 shows how the core functions of this new

system work to generate all games’ popularity values.

Figure 2. Core functions of the new system

For the implementation, JavaScript programming

language is used (Node.JS). The database chosen is

MySQL. In order to help manage the program, PM2 is

also implemented as the process manager. To get data

from Google Analytics, Google Analytics API

(Node.JS library) is used.

3.1. Google Analytics API

There are several steps to take when preparing to

call for Google Analytics API. To actually get data

from Google Analytics, a user needs to be authenticated

first. There are several ways to authenticate a user and

receive an access token, two of which are using OAuth

2.0 client IDs or using service account keys [9]. After

the user is authenticated, the next step is to call the API

and provide the query parameters needed to fetch the

desired data. There are several metrics and dimensions
that the user can choose from the API.

When sending the query request to Google

Analytics API, start-date and end-date parameters need

to be specified; in this case, the start-date and the end-

date parameters are set to yesterday’s date. By doing so,

when the program runs automatically at the beginning

of the day, the data gathered from Google Analytics

will be a complete set from the day before.

3.2. Algorithm Implementation

The algorithm used in this project is implemented

and can be seen from the core functions. These core
functions are called when the cron scheduling is

executed. It consists of functions for fetching,

calculating, scaling, updating, purging of data, and

generating XML files containing popularity values of

games from all sites.

3.2.1. Fetching Data

This function is the very first function to run when

the application is executed: fetching data from Google

Analytics and storing it in the database. During this

process, the Google Analytics API is used. This API
needs a service account key for authentication. After

loading the key, then use the code as seen in Figure 3 to

call the API.

Figure 3. Google Analytics API code snippet

One important remark is that the data gathered from
Google Analytics does not represent all games

available on one gaming site. Games that are not visited

by users will not appear in Google Analytics. That

being said, this function also needs a logic to combine

games that have today’s data with the ones that do not.

For example, game A has some UPV for today, and on

the other hand, game B does not. In cases like this,

game A will appear on Google Analytics, but game B

will not. However, the calculation of game popularity

will also take game B into account when calculating the

popularity value for today. If game B does not have any
data for today, then that means game B’s popularity is

decreasing.

3.2.2. Calculating Data

During this phase, all data from Google Analytics

are already available in the database. This is to prevent

any error caused by unavailable data because Node.JS

Budiarto, J. A. / Game Popularity Tracking System / JIRAE, Vol. 3, No. 2, October 2018, pp. 79–85

83

can run asynchronously, meaning that it does not have

to wait until one process is finished to run the next one.

The algorithm devised during the research phase is

implemented here.

1. Calculate the difference metrics.

To calculate the difference of UPV and the
difference of ATP, previous day’s data is

needed. This data can be found by querying to

analytics data using the date of the previous day.

If there are no data from the previous day then

both of the metrics will be set to zero. The data

will be temporarily saved in an array.

2. Merge data of all games.

After the differences of UPV and ATP are

calculated, this function will query all games

available in respective gaming sites. After that,

the data from Google Analytics will be merged
together with the result from the query, so by

now the process already has all game data

available.

3. Get game ratings for the current day.

While the process is merging data, it will also

send queries to the database to get game ratings,

consisting of the users count and the stars given

by those users. It will then subtract the values of

users count and stars today with the values of

old users count and old stars from the column

old count and old stars. All the ratings data will

also be temporarily held in an array. (Note:

Steps 2 and 3 run concurrently and both

functions are asynchronous.)

4. Calculate Weighted Average.

After all metrics have been gathered, the next

step is calculating the weighted average. By

using the weight set for production, the

algorithm for Weighted Average is implemented

here. Also, the limit of user ratings is

implemented. After all calculations are done,

then the process can move on to calculating the

popularity value, which considers the previous
popularity value using Exponential Moving

Average.

5. Calculate Exponential Moving Average.

Before calculating the popularity value, this

function will execute a query to the database to

get the EMA value of prior day for each game. If

there is no previous data, then the weighted

average is set as the initial value (see subsection

2.4.3, the second constraint). If there is data

from the previous day, the EMA algorithm is

executed.

3.2.3. Scale EMA to Generate Popularity Value

This step is only for readability purposes. The EMA

result is smoothed using exponential smoothing to

make it range from 0 – 100. The results will represent

the popularity. However, for the next day’s calculation,

the EMA value stored in the database is used instead.

3.2.4. Update Ratings Data

This function is executed after all calculation

processes have finished. The main usage of this

function is to update the value in the database. Because

the user ratings consist of the accumulation of users
count and stars, there are two extra fields that need to

be updated after every calculation. These two fields

record the old values of users count and stars. When

doing the calculation, these two fields are used to get

the users count and stars of one day only, by subtracting

the accumulation of users count and stars with the data

from these two fields.

 (6)

 (7)

3.2.5. Purge Data

The purge function is used for deleting old data

from the database. The reason is that the Google

Analytics data from previous days are no longer used

for future popularity calculation. Thus, the data are

purged in order to free up some space in the database.

3.2.6. Generating and Saving XML Files

The last part of the core function is to read from the

popularity and game rating table in the database, then

generate the XML files containing all games data

available in the database. These files will be used by the

API to retrieve the desired popularity values.

3.3. Application Programming Interface

This project is using RESTful API to get the

popularity value of games. The standard way to access

the API is by sending a GET request to the specified

URL. The other HTTP methods are not used because
the sole purpose of this API is to read data, not create

nor update. The way the API works is receiving the

request with parameters set by the client, and then using

the parameters to read the desired XML file. The API

will then send a response, back to the client, containing

all the content of the XML file.

The request can be sent by either using HTTP or

HTTPS, and it will return data in XML format,

containing the popularity and the ratings of games.

3.4. Scheduling

To keep the application running, it is deployed in a
virtual machine and managed by the help of PM2. PM2

is an advanced Node.JS process manager [10]. Even if

the application crashed, PM2 can automatically restart

the application and write the errors into a log file. To

automatically run the functions to calculate the

popularity value, cron scheduling is used. E.g., by

specifying the cron string to ‘0 0 8 * * *’, the

calculation will be executed every day at 8 am. By

Budiarto, J. A. / Game Popularity Tracking System / JIRAE, Vol. 3, No. 2, October 2018, pp. 79–85

84

combining the Google Analytics service account

authentication, PM2, and the cron scheduling, the

application can run automatically.

3.5. Implementation Remarks

Based on the implementation results in the previous
chapter, here are some important remarks about this

project:

1. Game Popularity definition can be defined as the

fact that the quality of a certain game is liked by

many people.

2. Metrics that represent game popularity, based on

the prior definition of game popularity, are the

number of users giving ratings (users count),

unique page views, and average time on page.

3. Google Analytics can be used to gather daily

data to calculate popularity values, even though
the data validity is NOT 100%.

4. The combination of Weighted Average,

Exponential Moving Average, and Exponential

Smoothing can produce the desired popularity

value.

5. Exponential Moving Average can be used to

deal with time factor when calculating the game

popularity values.

6. Cron Scheduling can be used to make the

program run automatically and PM2 can be used

to keep the program running continuously.

4. Testing

A/B testing method is used to test the formula. In

order to do this, real production data is needed.

However, unfortunately, due to CONFIDENTIALITY

reasons, the data retrieved from the company is limited,

and the name of the company cannot be mentioned. The

games will also be referred to as games A, B, C, D, and

E. The test data can be seen in Table 5 and it was

obtained on August 9, 2018, from the company’s

gaming website (the source will not be mentioned). The

popularity value shown in the table was calculated
using the company’s formula, and it has been around

for more than 2 years, meaning that the formula has

been proven to work in the production environment.

Table 5. Production’s popularity data

Game Popularity Value

A 4,573.395

B 2,446.182
C 1,477.791
D 715.576
E 646.369

Table 6 shows the calculation results of game A – E,

also obtained on August 9, 2018. Unfortunately, the

initial popularity value is unavailable, so according to

the formula’s second constraint (see subsection 2.4.3),

the weighted average results will be set as the initial

popularity values.

Table 6. Calculation results

Game UPV ATP Count WA

A 2,561 5,037.42 5,751 3,899.49
B 1,042 2,052.92 3,137 1,852.66
C 561 2,221.38 1,457 1,044.15

D 311 2,518.84 581 646.32
E 195 2,900.58 559 616.95

In table 6, the formula only considers the UPV,

ATP, and Count, and not the difference of UPV and

difference of ATP. That is because no previous data is

available. The parameter setting used in the calculation

can be seen in Table 2. Table 7 shows the comparison
between the company’s formula and the new popularity

formula.

Table 7. Comparison of popularity results

Game Company’s Formula New Formula

A 4,573.395 3,899.49
B 2,446.182 1,852.66
C 1,477.791 1,044.15
D 715.576 646.32
E 646.369 616.95

Even though the numbers are clearly different, if the

games are sorted, then the game list will have the same

order. The main difference of the old and the new

formula is that the new formula takes into consideration

several metrics that affect the popularity of a game,

while on the other hand the old formula only considers

the user given ratings of games. That being said, there

are bound to be some differences between the old and

the new formula over time, because the new formula
also considers the time factor. Unfortunately, it is not

possible to test it because the data is insufficient at the

moment.

5. Conclusion

By combining several algorithms (normalization,

weighted average, exponential moving average, and

exponential smoothing), using the right metrics (unique

page views, average time on page, and user ratings),

and after testing it using A/B testing method, as can be

seen from the result, the proposed formula can produce
the popularity value of games. The weighted average

algorithm makes it possible for the formula to be

customized as needed, while the exponential moving

average deals with the time factor.

After the popularity value is generated, the games

can then be sorted based on those values, which will

produce a list of games ranked by their popularity.

For implementation purposes, to make the program

calculate all popularity values daily automatically, the

use of PM2 and cron scheduling is more than sufficient.

To access the result, an API that has the function to
retrieve XML files from the server can be applied and

accessed using the GET method only, because it only

needs to read data from the server.

Budiarto, J. A. / Game Popularity Tracking System / JIRAE, Vol. 3, No. 2, October 2018, pp. 79–85

85

References

1. Cambridge Dictionary, Popularity – Meaning in

the Cambridge English Dictionary, retrieved from

https://dictionary.cambridge.org/dictionary/english/

popularity.
2. Gananath, R. and Sreenath, R., Calculating

Popularity Using a Simple Algorithm, Dec. 2013,

retrieved from http://vixra.org/pdf/1312.0052v1.

pdf.

3. McCalmont, T., 15 Metrics All Game Developers

Should Know by Heart, GameAnalytics, Jul. 2015,

retrieved from https://gameanalytics.com/blog/

metrics-all-game-developers-should-know.html.

4. Bagur, G., How do you measure the popularity of

games?, Mar. 2015, retrieved from https://www.

quora.com/How-do-you-measure-the-popularity-
of-games.

5. Google Developers, Dimensions & Metrics

Explorer, Analytics Reporting API v4, retrieved

from https://developers.google.com/analytics/

devguides/reporting/core/dimsmets#cats=session,

user,page_tracking.

6. Chase, R., Can You Trust Your Google Analytics

Data?, Blast Analytics & Marketing, Feb. 2013,

retrieved from https://www.blastam.com/blog/can-
you-trust-your-google-analytics-data.

7. Cortland, M., 2017 Adblock Report, PageFair, Feb.

2017, retrieved from https://pagefair.com/blog/

2017/adblockreport/.

8. Winnicki, A., Just how many web users disable

cookies or JavaScript?, The Yell Blog, Apr. 2016,

retrieved from https://blog.yell.com/2016/04/just-

many-web-users-disable-cookies-javascript/.

9. Google Developers, Analytics Reporting API -

Authorization, Analytics Reporting API v4,

retrieved from https://developers.google.com/
analytics/devguides/reporting/core/v4/authorization.

10. PM2, PM2 - Advanced Node.js process manager,

retrieved from http://pm2.keymetrics.io/.

