

1

JIRAE, Vol. 4, No. 1, April 2019, 1-5 DOI: 10.9744/jirae.4.1.1-5

e-ISSN 2407-7259

Towards a Low-Cost Solution to Learn Robot Manipulator Control

Handy Wicaksono1,a, Handry Khoswanto2,b, Petrus Santoso3,c

1,2,3 Petra Christian University, Jl. Siwalankerto 121-131, Surabaya 60236, Indonesia
ahandy@petra.ac.id, bhandry@petra.ac.id, cpetrus@petra.ac.id

Abstract. Learn a robot manipulator in university requires a physical robot so students can learn to

program it straight away. However, it is expensive and not affordable by most universities in Indonesia.

We turn to a ROS-based solution for an open source, free and advanced robotic software system. Using

ROS and Gazebo simulator, we develop a low-cost solution where students can learn an advanced robot

manipulator such as Baxter. We divide our labwork into five sections: controlling the arm w.r.t. joints

position, controlling the arm based on its inverse kinematics, object detection by a camera attached in

robot’s wrist, executing a simple plan: pick and place task, and enabling a robot to perform a tool-use

task. By gradually increasing the complexities of the labwork material we expect students get a better

understanding in controlling a robot manipulator. We provide an affordable solution for students to

learn robot manipulator control.

Keywords: Educational robot, robot manipulator, robot software architecture.

1. Introduction

Electrical Engineering (EE) Department at Petra
Christian University (Indonesia) provides a “Robotika”
course so students can learn about kinematics, dynamics,
and control of a robot manipulator. Most portions of the
course are spent to learn the mathematical aspects of a
robot by using MATLAB to assist the computation. As a
final project, students are asked to make a simple robot
arm and control it using techniques that have been
learned before. This kind of final project is chosen
because our laboratory has not provided an accurate
robot manipulator yet, because it is very expensive. The
absence of an accurate manipulator prevents students to
gain more complete and advance understanding of the
lecture.

To avoid the above problem, many educators turn to

a robot simulator to replace a physical robot, while the

open-source software is used instead of the dedicated
one. There are some software frameworks for robotics

(e.g. URBI [1], OROCOS [2], or Microsoft Robotics

Studio [3]), however, none of them become standard de

facto. Recently Robot Operating System (ROS) is

introduced by Standford researchers [4] and gains a lot

of populari t ies and adopt ions among robot ics

researchers.

ROS main advantage is it encourages researchers to

reuse the code (which are shared openly by other

researchers) so they can focus to develop a specific part

of robot software instead of keep “reinventing the wheel”

by programming all components of the robot. ROS also
supports integration of heterogeneous components of

robots. In conjunction with ROS, we can use a physics

simulator such as Gazebo, a realistic simulator environ-

ment that enables programmers to test their robot in

simulation before they deploy it in a real robot [5].

Considering the popularity and the flexibility of ROS

framework, we propose new learning modules for

“Robotics” course based on ROS and Gazebo to replace

the old ones. This will benefit students as they will have

the experience to deal with a complex robot since the

beginning of the course. This is important as the best

approach to learn robotics is “learning by doing”. On the

other hand, the school is also gain an advantage because
it does not have to pay anything for these open-source

software.

Some researchers report their work on the imple-
mentation of a robot system in education. Ruzzenente et

al. [6] review several robotic kits that are suitable for
tertiary education based on four criteria: modularity,

reusability, versatility and affordability. They choose to
use a LEGO NXT Mindstorm kit to develop a robot

manipulator and use integrated Matlab/ROS to control
the robot. Honig et al. [7] propose to use the integration

of V-REP simulator and iRobot Create 2.

We choose to use Baxter robot as it is a ROS-ready
robot with 7 degrees of freedom (DoF) and a lot of built-

in sensors (force sensors, ultrasonic sensors, a vision
sensor, etc.). It has two arms, which is useful if the

students want to learn about advance robotics appli-
cations in the future. Rethink Robotics provides API in

Python that is useful to access Baxter’s motors and
sensors in a ROS environment. It also provides a Baxter

simulator in a Gazebo environment.
The simulation by using ROS and Gazebo is

beneficial as the programmer can use a relatively similar
code in a real or simulated robot. If a robot's simulation

model is accurate, then the simulation result is reliable
and can be used to minimize real world experiment.

Based on that premise, in our previous research, we
enable a Baxter robot to learn how to use a tool in a

simulated and real environment [8] (see Figure 1. for
illustration).

The recent robot application involves an artificial

intelligence (AI) technique to make a robot smarter. ROS

enables researchers to incorporate an AI method in a

robot system relatively easily. ROS is also used by

computer science educators when they include robotics

Handy W. et al. / Towards a Low-Cost Solution to Learn Robot Manipulator Control / JIRAE, Vol. 4, No. 1, April 2019, pp. 1–5

 2

in their classes [9]. Students in our department (Electrical

Engineering) may also benefit to learn these interesting

AI techniques.

Figure 1. A physical and a simulated Baxter robot [8]

2. Architecture

We use an architecture that ensures the flexibility to

use low-level behaviors and high-level actions. To

support that, we develop a robot software architecture

that has three layers: deliberative, translation, and

reactive.

The reactive layer handles low level sensing and

primitive actions in a robot. It is written in Python

because Baxter has an easy-to-use Baxter API in Python.

The deliberative layer might be written using Prolog, a
logic programming approach that enables a robot to do

symbolic planning, reasoning and learning. The transla-

tion layer bridges the gap between the deliberative and

reactive layers. It is written in C++ as it has a library to

access SWI Prolog. We describe this in detail in our

research paper [10].

Figure 2. Robot architecture [10]

3. Learning Modules Development

We aim to use a Baxter robot in simulation to learn

the concepts of a robot manipulator. Here are several

main points that we want to emphasize in every learning

module:

1. Control the arm movement with regards to their joint

position and joint velocity

2. Control the arm movement by using Inverse

Kinematics solver

3. Execute a sequence of actions: pick and place task

4. Object detection using a camera
5. Combining object detection and action: visual

servoing pick and place task

We will combine the robot applications which are

provided by Rethink Robotics and Active Robots. We

also develop several applications by ourselves. We

assume the familiarity of ROS and Gazebo environment

for students who join our class. Each learning module

will be explained in detail below.

3.1 Control the arm movement with regards to their

joint position and joint velocity

The aims of this first module are twofold. The first

one introduces students with Baxter simulator and its

environment. Students need to understand existing

sensors and actuators in Baxter and how to access them

using Baxter API in Python.

The second aim is helping students to control the arm

by giving each joint: a target joint position and/or a target

joint velocity. An example program is provided by

Rethink Robotics to change an arm’s joint position by

using a keyboard (Joint Position Keyboard Example).
Baxter’s joints are shown in Figure 3. Demonstrating this

action and observing the code could help the students to

learn about the joint position.

Figure 3. Baxter’s joints

Rethink Robotics also provides Joint Velocity

Wobbler Example, where Baxter arms perform the

wobbly movement (see Figure 4. for the illustration).

Handy W. et al. / Towards a Low-Cost Solution to Learn Robot Manipulator Control / JIRAE, Vol. 4, No. 1, April 2019, pp. 1–5

 3

The students learn to assign a cosine function to the joint

velocity for each joint:

 𝑥 = 𝑎 ∗ cos⁡(2 ∗ 𝑝𝑖 ∗ 𝑓 ∗ 𝑡)

Where a refers to amplitude, f refers to frequency and

t refers to time.

Figure 4. Baxter performs the wobbly movement.

In this module, students only need to open the Baxter

in empty Gazebo world because there is no interaction

between the robot and other objects.

3.2 Control the arm movement by using Inverse

Kinematics solver

Controlling a manipulator robot by changing their

joints positions and velocities are not too useful and

intuitive for humans, who usually ask the robot to move

to a particular target coordinate. This can be achieved by

using Inverse Kinematics (IK) method to control a robot.

Another code example from Rethink Robotics (IK

Service Example) is useful to show students how to

control an arm by giving its target coordinate (robot’s
position and orientation).

Another useful and popular option is by using KDL

library to solve the IK equation. If students using this

library, they should start by determining the kinematics

structure of a manipulator, for example by determining

its DH (Denavit-Hartenberg) parameters. An alternative

option in KDL is by using the kinematics chain method

as shown in Figure 5.

As in the first module, students only need to open the

Baxter in empty Gazebo world here because they only

need to observe the arm movement itself.

3.3 Execute a sequence of actions: pick and place task

After learning to control to move an arm to a single

target location, students can proceed to perform a series

of actions in a pick and place task. This sequence of

1 Orocos.org

actions can be considered as a simple plan. Task planning

can bw done by just giving a predefined sequence to the

robot. In this case, Baxter needs to do a sequence of these

planned actions:

• Move to object location (based on its coordinate)

• Grip the object

• Move the object to a target location

• Ungrip the object

Figure 5. An example of a manipulator’s kinematics

chain1

To perform this module, Baxter robot, a table and a
cube must be provided in Gazebo simulation. Rethink

Robotics provides an example to perform this simple

pick and place task (see Figure 6 for the detail).

Figure 6. Baxter robot performs pick and place task

3.4 Object detection using a camera

Baxter is equipped with several sensors: vision

sensor, force sensor, torque sensor, sonar, etc. In the third

Handy W. et al. / Towards a Low-Cost Solution to Learn Robot Manipulator Control / JIRAE, Vol. 4, No. 1, April 2019, pp. 1–5

 4

module, the students begin to use a sensor (a camera) to

observe a robot’s environment. Students can make

objects (or using an available object template) in Gazebo

simulator. In this module, a table and objects basic-shape

should be provided.

Baxter's has a built-in RGB camera in each of its

grippers. It can detect objects on a table. Not just the

internal camera, the external camera can be added to

enable a robot to have a better view. Students can learn

object detection techniques, such as Canny edge method
and contour finding. OpenCV library can be used for this

purpose.

Initially, a very simple object like a cube can be used.

The RGB camera sees the object as a two-dimensional

square or rectangle (depends on its view angle). By

applying those two techniques above, the cube can be

detected (see Figure 7).

Figure 7. Cube detection by an external web camera

A more complex object, such as a hook-like object,

can be used in the next stage. A hook is a composed

object consists of a handle and one or more hooks. When
detected by an RGB camera, those parts are appeared as

several rectangles. By detecting those rectangles, a

particular hook can be found. In our system, we provide

five different shapes of hooks located on a table (see

Figure 8 for the detail).

Figure 8. Hook detection by Baxter's gripper camera

3.5 Combining object detection and action: using a

hook-like tool to pull a cube out of a tube

In this last module, we combine action execution

(which students have learned in section 3.2 and 3.3) and

object detection (appeared in section 3.4). As in section

3.3, we make a simple plan, however, actions in our plan

are performed based on the sensor reading. Our refined

plan is as follows:

• Find the target object (based on its 2D appearance)

• Grip the object

• Move the object to a target location (could be based

on the 2D appearance of an “arena”)

• Apply the object on another object

• Move the object to a home location

• Ungrip the object

The main difference between this module and
previous module in section 3.3 is the utilization of
cameras to detect the location of objects.

Practically, we modify the application developed by
Active Robots. Here, a robot must detect all objects on
the scene, pick the correct object, and apply it to a
particular target object. To increase the accuracy of
Baxter arm movement (which is not so great compared
to a conventional industrial robot), a visual servoing
technique is used here. This technique enables the robot
to use visual information from the gripper camera to
move its arm accurately. We use this technique to pick
the cube in the early stage.

Figure 9 shows the complete experimental scene
which consists of five hook-like tools that have different
shapes, a tube, and a cube. We utilize an external
webcam (appeared as yellow object) to equip the robot
with the complete view of its experimental scene.

Figure 9. The experimental scene of Baxter performing
a tool-use task

3.6 Possible extensions

Apart from the previous five modules, further
development can be done by adding the other two
modules to learn about: planning and machine learning.
Those are advanced topics because the students will
learn about artificial intelligence which is applied in
robotics. The abstract layer (see our architecture in
Figure 2) must be used here, as students need to learn
about symbolic planning or learning written in SWI
Prolog.

Having a symbolic task plan means that we do not
have to predefine a plan such as a module in section 3.5.
Having complete states and actions, problem solving can
be performed and the plan is produced automatically. A
simple symbolic planner such as means-ends planner or
STRIPS planner can be used here.

Handy W. et al. / Towards a Low-Cost Solution to Learn Robot Manipulator Control / JIRAE, Vol. 4, No. 1, April 2019, pp. 1–5

 5

Another extension that can be done is by adding a

machine learning algorithm (such as inductive logic

programming) in the abstract layer. If a robot is not given

a complete knowledge, the results of tool-use experi-

ments can be fed to the machine learning algorithm, so

the robot can learn incrementally which tool is correct

and how to use it in a way that guarantees a successful

tool-use task. This includes learning the structure and the

pose of a useful tool. We explain this approach in our

paper [6, 8], however, we have not developed it as a
learning module yet.

4. Conclusion

In this paper, we propose to develop learning

modules for students to learn a manipulator robot

without having a physical robot that is not affordable for

many universities in Indonesia. Open source projects

such as ROS, as robotics middleware, and Gazebo, as a

simulation environment, enable us to achieve our goal.

We explain five modules that have gradual complexities

in relation to robot action, perception, and planning. We

suggest another two modules about symbolic planning

and machine learning to introduce AI applications in

robotics.

These learning modules still in the development
stage, so they have not been used by the students yet, so

we can not conclude anything from the students’

perspective. In the future, we will conduct a survey to

evaluate the effectiveness of these modules to improve

the students’ understanding of the robot manipulator.

Acknowledgment

This work is supported by a research grant (Hibah

Penelitian Terapan Unggulan Perguruan Tinggi, contract

number 002/SP2H/LT/K7/KM/2017) from The Direc-

torate General of Resources for Science, Technology and

Higher Education (DG-RSTHE), Ministry of Research,

Technology, and Higher Education of the Republic of

Indonesia.

References

1. Baillie, J. C, URBI: Towards a universal robotic

low-level programming language, Proceedings of

2005 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Aug 2005, pp. 820-

825.

2. Bruyninckx, H., Open robot control software: the

OROCOS project, Proceedings 2001 ICRA. IEEE

international conference on robotics and automa-
tion, May 2001, pp. 2523-2528.

3. Jackson, J., Microsoft Robotics Studio: A technical

introduction, IEEE robotics & automation maga-

zine, 14(4), 2007, pp.82-87.

4. Quigley, M., et al: ROS: an open-source Robot

Operating System, ICRA workshop on open source

software, 2009.

5. Koenig, N. P., and Howard A.: Design and use

paradigms for Gazebo, an open-source multi-robot

simulator, Proceedings of IROS, 2004.

6. Ruzzenente, M., Koo, M., Nielsen, K., Grespan, L.
and Fiorini, P.: A review of robotics kits for tertiary

education, in Proceedings of International Work-

shop Teaching Robotics Teaching with Robotics:

Integrating Robotics in School Curriculum, April

2012, pp. 153-162.

7. Hönig, W., Tavakoli, A. and Ayanian, N.: Seamless

robot simulation integration for education: a case

study, in Workshop on the role of simulation in

robot programming at SIMPAR, 2016.

8. Wicaksono, H., and Sammut C.: Relational tool use

learning by a robot in a real and simulated world,
Proceedings of ACRA, 2016.

9. Michieletto, S., Ghidoni, S., Pagello, E., Moro, M.

and Menegatti, E., Why teach robotics using

ROS? Journal of Automation Mobile Robotics and

Intelligent Systems, 8, 2014.
10. Wicaksono, H. and Sammut, C., Tool use learning

for a real robot. International Journal of Electrical
and Computer Engineering, 8(2), 2018.

