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Abstract. Learn a robot manipulator in university requires a physical robot so students can learn to 

program it straight away. However, it is expensive and not affordable by most universities in Indonesia. 

We turn to a ROS-based solution for an open source, free and advanced robotic software system. Using 

ROS and Gazebo simulator, we develop a low-cost solution where students can learn an advanced robot 

manipulator such as Baxter. We divide our labwork into five sections: controlling the arm w.r.t. joints 

position, controlling the arm based on its inverse kinematics, object detection by a camera attached in 

robot’s wrist, executing a simple plan: pick and place task, and enabling a robot to perform a tool-use 

task. By gradually increasing the complexities of the labwork material we expect students get a better 

understanding in controlling a robot manipulator. We provide an affordable solution for students to 

learn robot manipulator control. 
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1. Introduction 

 

Electrical Engineering (EE) Department at Petra 
Christian University (Indonesia) provides a “Robotika” 
course so students can learn about kinematics, dynamics, 
and control of a robot manipulator. Most portions of the 
course are spent to learn the mathematical aspects of a 
robot by using MATLAB to assist the computation. As a 
final project, students are asked to make a simple robot 
arm and control it using techniques that have been 
learned before. This kind of final project is chosen 
because our laboratory has not provided an accurate 
robot manipulator yet, because it is very expensive. The 
absence of an accurate manipulator prevents students to 
gain more complete and advance understanding of the 
lecture. 

To avoid the above problem, many educators turn to 

a robot simulator to replace a physical robot, while the 

open-source software is used instead of the dedicated 
one. There are some software frameworks for robotics 

(e.g. URBI [1], OROCOS [2], or Microsoft Robotics 

Studio [3]), however, none of them become standard de 

facto. Recently Robot Operating System (ROS) is 

introduced by Standford researchers [4] and gains a lot 

of  populari t ies and adopt ions among robot ics  

researchers. 

ROS main advantage is it encourages researchers to 

reuse the code (which are shared openly by other 

researchers) so they can focus to develop a specific part 

of robot software instead of keep “reinventing the wheel” 

by programming all components of the robot. ROS also 
supports integration of heterogeneous components of 

robots. In conjunction with ROS, we can use a physics 

simulator such as Gazebo, a realistic simulator environ-

ment that enables programmers to test their robot in 

simulation before they deploy it in a real robot [5]. 

Considering the popularity and the flexibility of ROS 

framework, we propose new learning modules for 

“Robotics” course based on ROS and Gazebo to replace 

the old ones. This will benefit students as they will have 

the experience to deal with a complex robot since the 

beginning of the course. This is important as the best 

approach to learn robotics is “learning by doing”. On the 

other hand, the school is also gain an advantage because 
it does not have to pay anything for these open-source 

software.  

Some researchers report their work on the imple-
mentation of a robot system in education. Ruzzenente et 

al. [6] review several robotic kits that are suitable for 
tertiary education based on four criteria: modularity, 

reusability, versatility and affordability. They choose to 
use a LEGO NXT Mindstorm kit to develop a robot 

manipulator and use integrated Matlab/ROS to control 
the robot. Honig et al. [7] propose to use the integration 

of V-REP simulator and iRobot Create 2.  

We choose to use Baxter robot as it is a ROS-ready 
robot with 7 degrees of freedom (DoF) and a lot of built-

in sensors (force sensors, ultrasonic sensors, a vision 
sensor, etc.). It has two arms, which is useful if the 

students want to learn about advance robotics appli-
cations in the future. Rethink Robotics provides API in 

Python that is useful to access Baxter’s motors and 
sensors in a ROS environment. It also provides a Baxter 

simulator in a Gazebo environment.  
The simulation by using ROS and Gazebo is 

beneficial as the programmer can use a relatively similar 
code in a real or simulated robot. If a robot's simulation 

model is accurate, then the simulation result is reliable 
and can be used to minimize real world experiment. 

Based on that premise, in our previous research, we 
enable a Baxter robot to learn how to use a tool in a 

simulated and real environment [8] (see Figure 1. for 
illustration). 

The recent robot application involves an artificial 

intelligence (AI) technique to make a robot smarter. ROS 

enables researchers to incorporate an AI method in a 

robot system relatively easily. ROS is also used by 

computer science educators when they include robotics 
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in their classes [9]. Students in our department (Electrical 

Engineering) may also benefit to learn these interesting 

AI techniques. 

 

 

Figure 1. A physical and a simulated Baxter robot [8] 

 

2. Architecture 
 

We use an architecture that ensures the flexibility to 

use low-level behaviors and high-level actions. To 

support that, we develop a robot software architecture 

that has three layers: deliberative, translation, and 

reactive.  

The reactive layer handles low level sensing and 

primitive actions in a robot. It is written in Python 

because Baxter has an easy-to-use Baxter API in Python. 

The deliberative layer might be written using Prolog, a 
logic programming approach that enables a robot to do 

symbolic planning, reasoning and learning. The transla-

tion layer bridges the gap between the deliberative and 

reactive layers. It is written in C++ as it has a library to 

access SWI Prolog. We describe this in detail in our 

research paper [10]. 

 

 
 

Figure 2. Robot architecture [10] 

3. Learning Modules Development 
 

We aim to use a Baxter robot in simulation to learn 

the concepts of a robot manipulator. Here are several 

main points that we want to emphasize in every learning 

module: 

1. Control the arm movement with regards to their joint 

position and joint velocity 

2. Control the arm movement by using Inverse 

Kinematics solver   

3. Execute a sequence of actions: pick and place task 

4. Object detection using a camera 
5. Combining object detection and action: visual 

servoing pick and place task 

 

We will combine the robot applications which are 

provided by Rethink Robotics and Active Robots. We 

also develop several applications by ourselves. We 

assume the familiarity of ROS and Gazebo environment 

for students who join our class. Each learning module 

will be explained in detail below. 

 

3.1 Control the arm movement with regards to their 

joint position and joint velocity 

 

The aims of this first module are twofold. The first 

one introduces students with Baxter simulator and its 

environment. Students need to understand existing 

sensors and actuators in Baxter and how to access them 

using Baxter API in Python.  

The second aim is helping students to control the arm 

by giving each joint: a target joint position and/or a target 

joint velocity. An example program is provided by 

Rethink Robotics to change an arm’s joint position by 

using a keyboard (Joint Position Keyboard Example). 
Baxter’s joints are shown in Figure 3. Demonstrating this 

action and observing the code could help the students to 

learn about the joint position. 

 

 
 

Figure 3. Baxter’s joints 

 

Rethink Robotics also provides Joint Velocity 

Wobbler Example, where Baxter arms perform the 

wobbly movement (see Figure 4. for the illustration). 
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The students learn to assign a cosine function to the joint 

velocity for each joint: 

  𝑥 = 𝑎 ∗ cos⁡(2 ∗ 𝑝𝑖 ∗ 𝑓 ∗ 𝑡)   

Where a refers to amplitude, f refers to frequency and  

t refers to time. 

 

 

Figure 4. Baxter performs the wobbly movement. 

 

In this module, students only need to open the Baxter 

in empty Gazebo world because there is no interaction 

between the robot and other objects. 

 

3.2 Control the arm movement by using Inverse 

Kinematics solver 

 

Controlling a manipulator robot by changing their 

joints positions and velocities are not too useful and 

intuitive for humans, who usually ask the robot to move 

to a particular target coordinate. This can be achieved by 

using Inverse Kinematics (IK) method to control a robot. 

Another code example from Rethink Robotics (IK 

Service Example) is useful to show students how to 

control an arm by giving its target coordinate (robot’s 
position and orientation).  

Another useful and popular option is by using KDL 

library to solve the IK equation. If students using this 

library, they should start by determining the kinematics 

structure of a manipulator, for example by determining 

its DH (Denavit-Hartenberg) parameters. An alternative 

option in KDL is by using the kinematics chain method 

as shown in Figure 5.  

As in the first module, students only need to open the 

Baxter in empty Gazebo world here because they only 

need to observe the arm movement itself. 

 

3.3 Execute a sequence of actions: pick and place task 

After learning to control to move an arm to a single 

target location, students can proceed to perform a series 

of actions in a pick and place task. This sequence of 

 
1 Orocos.org 

actions can be considered as a simple plan. Task planning 

can bw done by just giving a predefined sequence to the 

robot. In this case, Baxter needs to do a sequence of these 

planned actions: 

• Move to object location (based on its coordinate) 

• Grip the object 

• Move the object to a target location 

• Ungrip the object 

 

 
 

Figure 5. An example of a manipulator’s kinematics 

chain1 

 

To perform this module, Baxter robot, a table and a 
cube must be provided in Gazebo simulation. Rethink 

Robotics provides an example to perform this simple 

pick and place task (see Figure 6 for the detail). 

 

 
 

Figure 6. Baxter robot performs pick and place task 
 

3.4 Object detection using a camera 

Baxter is equipped with several sensors: vision 

sensor, force sensor, torque sensor, sonar, etc. In the third 
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module, the students begin to use a sensor (a camera) to 

observe a robot’s environment. Students can make 

objects (or using an available object template) in Gazebo 

simulator. In this module, a table and objects basic-shape 

should be provided. 

Baxter's has a built-in RGB camera in each of its 

grippers. It can detect objects on a table. Not just the 

internal camera, the external camera can be added to 

enable a robot to have a better view. Students can learn 

object detection techniques, such as Canny edge method 
and contour finding. OpenCV library can be used for this 

purpose.  

Initially, a very simple object like a cube can be used. 

The RGB camera sees the object as a two-dimensional 

square or rectangle (depends on its view angle). By 

applying those two techniques above, the cube can be 

detected (see Figure 7). 

 

 

Figure 7. Cube detection by an external web camera 

 

A more complex object, such as a hook-like object, 

can be used in the next stage. A hook is a composed 

object consists of a handle and one or more hooks. When 
detected by an RGB camera, those parts are appeared as 

several rectangles. By detecting those rectangles, a 

particular hook can be found. In our system, we provide 

five different shapes of hooks located on a table (see 

Figure 8 for the detail). 
 

 

Figure 8. Hook detection by Baxter's gripper camera 

 
3.5 Combining object detection and action: using a 

hook-like tool to pull a cube out of a tube 

In this last module, we combine action execution 

(which students have learned in section 3.2 and 3.3) and 

object detection (appeared in section 3.4). As in section 

3.3, we make a simple plan, however, actions in our plan 

are performed based on the sensor reading. Our refined 

plan is as follows: 

• Find the target object (based on its 2D appearance) 

• Grip the object 

• Move the object to a target location (could be based 

on the 2D appearance of an “arena”) 

• Apply the object on another object 

• Move the object to a home location 

• Ungrip the object 
 

The main difference between this module and 
previous module in section 3.3 is the utilization of 
cameras to detect the location of objects. 

Practically, we modify the application developed by 
Active Robots. Here, a robot must detect all objects on 
the scene, pick the correct object, and apply it to a 
particular target object. To increase the accuracy of 
Baxter arm movement (which is not so great compared 
to a conventional industrial robot), a visual servoing 
technique is used here. This technique enables the robot 
to use visual information from the gripper camera to 
move its arm accurately. We use this technique to pick 
the cube in the early stage. 

Figure 9 shows the complete experimental scene 
which consists of five hook-like tools that have different 
shapes, a tube, and a cube. We utilize an external 
webcam (appeared as yellow object) to equip the robot 
with the complete view of its experimental scene. 

 

 

Figure 9. The experimental scene of Baxter performing 
a tool-use task 

 
3.6 Possible extensions 

Apart from the previous five modules, further 
development can be done by adding the other two 
modules to learn about: planning and machine learning. 
Those are advanced topics because the students will 
learn about artificial intelligence which is applied in 
robotics. The abstract layer (see our architecture in 
Figure 2) must be used here, as students need to learn 
about symbolic planning or learning written in SWI 
Prolog. 

Having a symbolic task plan means that we do not 
have to predefine a plan such as a module in section 3.5. 
Having complete states and actions, problem solving can 
be performed and the plan is produced automatically. A 
simple symbolic planner such as means-ends planner or 
STRIPS planner can be used here.  
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Another extension that can be done is by adding a 

machine learning algorithm (such as inductive logic 

programming) in the abstract layer. If a robot is not given 

a complete knowledge, the results of tool-use experi-

ments can be fed to the machine learning algorithm, so 

the robot can learn incrementally which tool is correct 

and how to use it in a way that guarantees a successful 

tool-use task. This includes learning the structure and the 

pose of a useful tool. We explain this approach in our 

paper [6, 8], however, we have not developed it as a 
learning module yet. 

 

4. Conclusion 
 

In this paper, we propose to develop learning 

modules for students to learn a manipulator robot 

without having a physical robot that is not affordable for 

many universities in Indonesia. Open source projects 

such as ROS, as robotics middleware, and Gazebo, as a 

simulation environment, enable us to achieve our goal. 

We explain five modules that have gradual complexities 

in relation to robot action, perception, and planning. We 

suggest another two modules about symbolic planning 

and machine learning to introduce AI applications in 

robotics. 

These learning modules still in the development 
stage, so they have not been used by the students yet, so 

we can not conclude anything from the students’ 

perspective. In the future, we will conduct a survey to 

evaluate the effectiveness of these modules to improve 

the students’ understanding of the robot manipulator. 
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