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Abstract. The paper presents an inventory routing problem for perishable products using dynamic demand and 

spoilage rate data. This problem has three main costs for the simulation criteria: holding inventory cost, routing 

shipment cost, and perishable product cost with a single supplier and many retailers. Instead of the problem, there 

are 2 set decision variables inventory level range and shipping route. The simulation uses a Genetic Algorithm 

method to find the minimum cost. It shows that the dynamic data demand can be optimized, and the dynamic 

demand data have bigger cost consequences than the static demand data. 
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1. Introduction 

Vendor-Managed Inventory (VMI) is inventory mana-

gement controlled by the supplier for their retailer. In the VMI 

system, suppliers manage retailers' inventory levels from 

shipping quantity and shipping route in one planning period 

[1]. Inventory Routing Problem (IRP) is one of the VMI 

methods to optimize the cost of inventory routing. Inventory 

routing optimization is an important thing for fulfilling the 

demand market with optimal cost. IRP is a basic of optimizing 

inventory levels from retailers for fulfilling the demand market 

with minimum transport and inventory from the system [2]. 

The IRP object is to minimize the cost of shipping and inven-

tory from the planning horizon without causing retail's 

inventory to run out of stock. 

The perishable products give more challenges in inventory 

management and also attempting to minimize defective unsold 

products. The perishable products have a random lifetime 

caused by the environment, such as temperature and humidity, 

and also uncertainty of transport time and product harvest 

condition [3]. The random lifetime of the perishable product 

causes inventory cost because of that defective unsold product 

[4-6]. 

The previous paper developed the IRP model to optimize 

the routing problem of perishable products with a static 

demand and spoilage rate. In this paper, the IRP model for 

perishable products decides inventory stock level and shipping 

route with a dynamic demand and spoilage rate. This model is 

solved by the Genetic Algorithm (GA) method to get optimal 

inventory stock level and shipping route with optimal cost. This 

proposed model was tested by random dynamic demand and 

spoilage rate data. The problem result of this proposed model 

can be used to decide the inventory level of each retail and 

shipping route with optimal cost and fulfill the dynamic 

demand. 
 

2. Literature Review 

2.1. Inventory Routing Problem (IRP) 

IRP is a primary method for optimizing the inventory level 
of retailers to fulfill market demand with a minimum shipping 
and inventory cost from a system [2]. IRP is one of the VMI 
solutions that suppliers manage retail's inventory level. In the 
previous paper, IRP was proposed for many problem methods 
such as perishable product, maritime, inbound, multi-product, 
stochastic periodic, green, and cyclic with two versions of IRP 
deterministic and stochastic [2]. 

From previous IRP papers, there is two main cost problem 
from IRP, inventory holding cost and shipping cost [1, 4, 6, 7]. 
Holding cost is an expense for storing products at each retail 
warehouse. That holding cost usually counts by the amount of 
inventory stock in the warehouse. Shipping cost is an expense 
of shipping transport from supplier to each retail and back to 
supplier. These costs have several parameters such as the 
amount of holding cost of each product from each retail, retail 
distance, the inventory level of each period, shipping capacity, 
retail holding capacity, and others. There is previous related 
literature with each part that can be seen in Table 1. 

Table 1. Previous IRP paper 

Reference Solution Method 
Perishable 

Products 

Transshipm

ent 

Single 

Supplier 

Single 

Carrier 

Dynamic Demand & 

Spoilage Rate 

Dynamic Location of 

Distribution Center 

This paper Genetic Algorithm V  V V V  

[4] 
Genetic Algorithm + 

Taguchi Approach 
V V V V   

[5] Decomposition procedure V   V   

[7] Genetic Algorithm V  V    

[8] Myopic Algorithm   V   V 
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2.2. Perishable Product 

A perishable product is a product that has a random 

lifetime. The product that ships from supplier to retail may have 

a different lifetime [3]. The perishable product has an uncertain 

lifetime that is challenged to fulfill market demand with the 

amount of products spoilage that can't be sold. Examples of 

perishable products are packaged food, food material, fruits, 

vegetables, and others. 

In IRP model [4] said that perishable products affect the 

cost from the product's price when can't sell the defected 

product. The spoilage rate of perishable products is directly 

proportional to the amount of inventory stock level. In the IRP 

model, the spoilage rate variable is a function to count the 

amount of defective product from each retail in each period. 

2.3. Genetic Algorithm 

A genetic Algorithm is a biologically motivated approach 

which popular in solving a complex optimization problem. GA 

makes sets of solutions called the population to get the best 

solution. GA has an operator such as crossover, mutation, and 

selection are utilized to get new solution sets (offspring) to 

reach the desired solution [4]. There are three important things 

in GA, chromosome representation, fitness value function, and 

population regeneration. Chromosome representation is a set 

structure of decision variables to solve the problem. The fitness 

value function is a formulation value which is the benchmark 

value of each set chromosome. Population regeneration is a 

process to get a new set of chromosomes (offspring). GA is 

commonly used to solve a non-linear problem, such as in [4]  

and [7]. Both of those papers discuss  

about IRP for perishable products and using the GA method to 

solve the problem. 
 

3. Problem Description 

In this section, we propose a mathematical model of 

inventory routing problem for a perishable product with 

dynamic demand and spoilage rate which the supplier should 

decide an optimal solution of retail's inventory level and 

shipping route. This mathematical model is based on [4] with 

the adaptation of dynamic demand and spoilage rate. These 

model objects are single product, single supplier, single 

shipping vehicle, and multi-period with multi retail. The 

objective of this problem is to minimize the total cost of the 

system and fulfill the entire demand in each period. 
 

3.1. Notation 

3.1.1. Parameters 

Notation Description 

hi Holding cost of retail i 
T Number of periods 
M Number of retail 

di (t) Demand of retail I in t period 
Sri (t) Spoilage rate product of retail I in t period 
Spi (t) Number of defect product of retail I in t period 

Q Shipping capacity in one period 
cij Shipping distance cost from retail i to retail j 
Ci Holding capacity of retail i 
P Product's price 

Ii (0) Initial stock of retail i 
 

 
 

3.1.2. Decision variables 

Notation Description 

Li Minimum stock level retail i 

Mi Maximum stock level retail j 

Xij (t) Binary Decision, 1 if pass a route from retail i to retail j, 

and else is 0 

qi (t) Quantity product sent to retail i in t period 

 

3.2. Mathematical Model 

The objective function of this model is to minimize the cost 

of the inventory system. There are three costs from this model, 

holding inventory cost represented in the first term, defect 

product cost in the second term, and shipping route cost in the 

third term that as shown in equation (1) 

𝑀𝑖𝑛 𝑍 =  ∑ ∑ ℎ𝑖𝐼𝑖(𝑡)𝑀
𝑖=1

𝑇
𝑡=1 + 𝑃 ∑ ∑ 𝑆𝑝𝑖(𝑡)𝑀

𝑖=1
𝑇
𝑡=1 +

 ∑ ∑ ∑ 𝑐𝑖𝑗
𝑀
𝑗=𝑖+1 𝑋𝑖𝑗(𝑡)𝑀

𝑖=1
𝑇
𝑡=1  (1) 

Subject to: 

𝐼𝑖(𝑡) =  𝐼𝑖(𝑡 − 1) − 𝑆𝑝𝑖(𝑡 − 1) + 𝑞𝑖(𝑡) − 𝑑𝑖(𝑡) 𝑖 =
1 . . 𝑀 ; 𝑡 = 1 . . 𝑇 (2) 

𝑆𝑝𝑖(𝑡) =  𝑆𝑟𝑖(𝑡) × 𝐼𝑖(𝑡)        𝑖 = 1 . . 𝑀 ; 𝑡 = 1 . . 𝑇 (3) 

𝐼𝑖(𝑡) ≤ 𝑀𝑖 ≤  𝐶𝑖         𝑖 = 1 . . 𝑀 ; 𝑡 = 1 . . 𝑇 (4) 

𝐼𝑖(𝑡) ≥ 𝐿𝑖         𝑖 = 1 . . 𝑀 ; 𝑡 = 1 . . 𝑇 (5) 

∑ 𝑞𝑖(𝑡)𝑀
𝑖=1 ≤ 𝑄        𝑡 = 1 . . 𝑇 (6) 

∑ 𝑋𝑖𝑗(𝑡)𝑀
𝑖=0 = ∑ 𝑋𝑗𝑖(𝑡)        𝑗 = 1 . . 𝑀 ; 𝑡 = 1 . . 𝑇𝑀

𝑖=0  (7) 

𝑋𝑖𝑗(𝑡) ∈  {0,1}   𝑖 = 1 . . 𝑀 ; 𝑗 = 1 . . 𝑀 ; 𝑖 ≠ 𝑗 ;  𝑡 = 1 . . 𝑇 (8) 

𝑆𝑟𝑖(𝑡) ∈  {0%, … ,100%}        𝑖 = 1 . . 𝑀 ; 𝑡 = 1 . . 𝑇 (9) 

𝑇, 𝑀 ∈  {0, 1, 2, 3, … } (10 

ℎ𝑖 , 𝑑𝑖(𝑡), 𝑄, 𝐶𝑖 , 𝐼𝑖(𝑡), 𝐿𝑖 , 𝑀𝑖 , 𝑞𝑖(𝑡) ≥ 0 (11) 

 

Number of products shipped at t period equals to fulfill 

retail's stock until maximum stock level (Mi) if retail's last stock 

(t - 1 period) is less than minimum stock level (Li). The number 

of products shipped can be seen in equation (12). 

𝑞𝑖(𝑡) =  𝑀𝑖 − (𝐼𝑖(𝑡 − 1) − 𝑆𝑝𝑖(𝑡 − 1) −  𝑑𝑖(𝑡))𝑖 =
1 . . 𝑀 ; 𝑡 = 1 . . 𝑇 (12) 

 

Equation (2) shows a retailer's stock level at t period equals 

to last period stock level and shipped product number reduced 

by last period spoilage product and demand product at t period. 

Equation (3) is a number of spoilage products at t period equals 

to spoilage rate at t period multiplied by the stock level at t 

period. Equation (4) is a constraint of stock level, which must 

be less than maximum stock level and also maximum retail's 

stock capacity. Equation (5) is a constraint of stock level, which 

must be greater or equal to the minimum stock level. Equation 

(6) is a constraint of total shipping, which must be less or equal 

to the shipping capacity of each period. Equation (7) is a 

constraint of the shipped route. Equation (8) is a constraint of 

shipping route is a binary. Equation (9) is a constraint of 

spoilage rate product. Equation (10) is a constraint where the 

number of retails and periods are integer. Equation (11) is a 

non-negativity constraint. 
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4. Genetic Algorithm 

4.1. Dynamic Data Simulation 

A model with dynamic data was proposed by [8] through 

dynamic distribution center simulation. In this paper, the 

dynamic simulation was adopted to generate data set of 

dynamic demand and spoilage rate. This part generates 

demand and spoilage rate data randomly for each retail at each 

period and simulates for each data set with the solution using 

the Genetic Algorithm method to find an optimal solution for 

all data set. The representation of demand and spoilage rate 

data can be seen in Figure 1. 

 

 
Figure 1. Representation of demand and spoilage rate data 

 

4.2. Chromosome Representation 

Chromosome representation is a representation of decision 

variables from the problem model. The decision variable of this 

model is inventory stock level and shipping route. Inventory 

stock level generates a range of stock amount for each retail i 

with Li for minimum stock and Mi for maximum stock with a 

random number from 0 to maximum retail i capacity. 

Inventory stock level representation can be seen in Figure 2. 

 

 
Figure 2. Inventory Stock Level Representation 

 

The shipping route is an order of delivery from the supplier 

to each retail and returns to the supplier in each period. If the 

quantity of delivery for retail i is zero, then the route of retail i 

will be zero. This route representation is transferred into 

Xij(t)with binary value. Shipping route representation can be 

seen in Figure 3. 

 

 
Figure 3. Shipping Route Representation 

 

Each chromosome has a solution of inventory stock level 

and shipping route. Each of these set representations has a 

fitness value from this objective function model. The smaller 

fitness value is the optimal solution. 
 

4.3. Population 

A population is a group of chromosomes that are generated 

randomly. The chromosome is generated randomly by the 

system for P times in the first iteration. In the next iteration, the 

population of chromosomes is generated from the Genetic 

Algorithm operator, such as crossover, mutation, and elitism. 

For each iteration, the system randomly pairs two 

chromosomes using the roulette wheel method into crossover 

until P offspring is generated. 

 

4.4. Crossover 

Crossover is one of the GA operators that generate new 

offspring chromosomes from pairs of parent chromosomes. In 

this process, these chromosomes change parts of the parent 

chromosomes to each other and generate new offspring 

chromosomes by using the one-point crossover. There are 2 

parts of each chromosome, inventtory stock level and shipping 

route. Inventory stock level change the half minimum and 

maximum part with the other chromosome that can be seen in 

Figure 4. 

 

 
Figure 4. Inventory Stock level Crossover 

 

Shipping route chromosome also changes half their parts 

with other chromosomes. The crossover of this shipping route 

chromosome can be seen in Figure 5. 

 

 

Figure 5. Shipping Route Crossover 
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4.5. Mutation 

The mutation is a GA operator that changes the part of each 

new offspring chromosome randomly. In this process, each 

new offspring chromosome mutates each part with the 

mutation rate (Mr) parameter as a random mutation decision. 

The value of Mr parameter in this simulation is set to 0.6 for 

inventory stock level mutation. Each part of the chromosome 

generates a random number and changes to a new random 

number with interval 0 to maximum retail capacity, and a 

constraint for the minimum must be smaller than maximum, 

and the maximum must be bigger than the minimum. If the 

random number is bigger than Mr. Mutation of inventory stock 

level can be seen in Figure 6. 

 

 
Figure 6. Inventory Stock Level Mutation 

 

The shipping route also generates the random number on 

each chromosome's part and mutates two parts in each period 

that have a bigger random number. Shipping route mutation 

can be seen in Figure 7. 

 

 
Figure 7. Shipping Route Mutation 

 

4.6. Elitism 

Elitism is the last GA operator that preserves several parent 

chromosomes which have the lowest fitness value with the 

specified amount. The preserved parent chromosomes com-

bined with new offspring chromosomes population for next 

iteration. The purpose of this elitism process is to preserve a 

good parent chromosome that has a good fitness value. This 

proposed model uses a fixed number of elitism. 

 

4.7. Stopping criteria 

Stopping criteria is a condition statement to end GA 

iteration. This proposed model uses a fixed stopping criteria 

with a number of iterations parameter (g). 

 

5. Numerical Example 

In this section, the proposed Genetic Algorithm method 

and representation are run to solve three sets of data simulation 

samples. These are represented through every five sets of 

demand and spoilage rate. This simulation focused on simu-

lating different demand numbers. Each of the data sets of 

demand generated randomly with uniform distribution normal 

interval dynamic demand, normal interval static demand, and 

small interval dynamic demand in [20 - 60] units, [20 - 60] 

units, and [30 - 40] units, respectively with same spoilage rate 

[5 - 15]%. This simulation has five periods with ten retails and 

750 units supplier's shipping capacity for each period. The 

main problem of this simulation sample is the dynamic 

demand and spoilage rate.  This simulation shows the decision 

variable should be fulfilled to all dynamic demand and spoilage 

rate samples. The cost of this simulation was generated 

randomly with a uniform distribution interval for holding cost 

[10 - 25], retail cost distance [20 - 50], and fixed 40 for the 

product price. The other parameters were holding cost each 

retail and number of elitism in [60 - 100] and ten respectively. 

The population and iteration numbers are a combination of 

population 80, 100, 120, and 140, and also iteration 100, 150, 

200, and 250. The cost of this simulation is represented by each 

fitness value solution. Fitness value for each solution/ 

Table 2. Simulation Result 
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chromosome obtained from the average of each cost demand 

and spoilage rate data set simulation. This Genetic Algorithm 

is implemented by using PHP HTML programming language 

and database storage using MySQL to facilitate subsequent 

development using real demand and spoilage rate data and also 

take advantage of the flexibility access web technology.  
 

6. Result & Discussion 

The simulation has one supplier, ten distributors, and five 
periods. The supplier controlled the inventory levels and 
shipping routes for each distributor. The simulation use com-
bination of iteration number in 100, 150, 200, and 250 and 
population number in 80, 100, 120, and 140 with three different 
data dynamic demand 20-60, static demand 20-60, and 
dynamic demand 30-40. The result of each simulation shows 
that it has a cost reduction with the best fitness value at 250 
iterations and 140 population and has a more execution time in 
each added iteration or population. The simulation combi-
nation and simulation result can be seen in Table 2. 

Instead of the best fitness value with more iteration and 
population, the execution time is also increased. The optimal 
execution time with the optimal result is in 250 iterations and 
140 populations which have a significant cost reduction of 
1.53% and 0.68%, respectively. The increment time and cost 
reduction comparison can be seen in Table 3. 

 

Table 3. Increment Time and Cost Reduction Comparison 

 
 

The first result is a normal interval dynamic demand [20 - 
60] units iteration with 19.8% average cost reduction and 
optimal fitness value 44978.2, inventory level decision retail 1 
to 10 in [48 - 66], [40 - 64], [56 - 57], [60 - 66], [2 - 61], [36 - 
62], [14 - 63], [59 - 68], [4 - 72], [57 - 63], respectively, and 
shipping route decision period 1 to 5 in [0-2-4-6-10-9-3-7-1-8-
5-0], [0-5-8-3-2-1-7-10-4-6-9-0], [0-2-4-5-10-7-9-6-8-3-1-0], 
[0-7-8-6-3-1-2-9-4-10-5-0], [0-4-6-5-3-2-8-1-9-7-10-0], res-
pectively. This result has cost reduction of initial solution from 
56357.6 to 44978.2 shown in Figure 8. 

 
Figure 8. Cost Reduction of Normal Interval Dynamic Demand 

The second result is a normal interval static demand [20 - 

60] units iteration with 20.3% average cost reduction and 

optimal fitness value 41297.2, inventory level decision retail 1 

to 10 in [59 - 66], [46 - 83], [53 - 64], [21 - 60], [53 - 57], [7 - 

58], [39 - 63], [0 - 59], [58 - 68], [68 - 85], respectively, and 

shipping route decision period 1 to 5 in [0-1-7-8-4-5-3-9-2-10-

6-0], [0-8-10-6-3-4-1-7-5-9-2-0], [0-9-1-7-5-2-10-4-3-6-8-0], 

[0-10-8-7-2-6-5-9-4-1-3-0], [0-3-9-10-1-8-5-2-7-6-4-0], res-

pectively. This result has cost reduction of initial solution from 

50763.2 to 41297.2 shown in Figure 9. 

 

 
Figure 9. Cost Reduction of Normal Interval Static Demand 

 

The third result is a small interval dynamic demand [30 - 

40] units iteration with 24.2% average cost reduction and 

optimal fitness value 32568, inventory level decision retail 1 to 

10 in [14 - 46], [41 - 52], [41 - 46], [21 - 40], [46 - 46], [25 - 

50], [20 - 45], [0 - 49], [37 - 47], [7 - 84], respectively, and 

shipping route decision period 1 to 5 in [0-3-2-4-10-9-5-7-8-6-

1-0], [0-5-10-3-7-1-8-2-9-4-6-0], [0-4-9-6-5-10-2-3-7-8-1-0], 

[0-5-3-7-6-2-10-4-8-9-1-0], [0-2-3-8-9-4-10-6-5-1-7-0], res-

pectively. This result has 34.1% cost reduction of initial 

solution from 44669.8 to 32568 shown in Figure 10. 

 
Figure 10. Cost Reduction of Small Interval Dynamic Demand 

 

The model in this paper combines the IRP model of 

perishable products with dynamic data of demand and spoilage 

rate from retails on each period. There are samples of dynamic 

data through the previous study about dynamic distribution 

center simulation, which converted into dynamic data of 

demand and spoilage simulation and generated set data 
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simulation of previous IRP model. There are three main costs 

in this model, holding inventory cost, defect product cost and 

shipping route cost. The solution should be fulfilling each 

demand and spoilage rate simulation and have the best cost. By 

using Genetic Algorithm, the result of this simulation shows 

that the dynamic demand can be optimized by the result's 

pattern with fixed stopping criteria iteration and have a higher 

cost than static demand. The best result of this simulation is 

small interval dynamic demand which has 24.2% cost 

reduction, followed by normal interval dynamic and static 

demand which have 19.8% and 20.3% cost reduction. This 

result shows that smaller interval has a better reduction and 

dynamic and static demand have the same reduction that shows 

the dynamic can be solved as a static problem. But, the optimal 

best solution shows that dynamic demand data has bigger 

optimal cost consequences than static demand data. Instead of 

the best solution, the execution time shows that the most 

optimal cost reduction is in 250 iterations and 140 population. 

In this paper, the IRP model has a single product, single 

supplier, and single-carrier object. Therefore, the dynamic 

demand and spoilage rate can be optimized by this IRP model. 

So, the model can be improved with other inventory routing 

problem objects or constraints such as multiple products, 

multiple suppliers, multiple carriers, or anything else. 
 

7. Conclusions 

The simulation has one supplier, ten distributors, and five 

periods. The supplier controlled the inventory levels and 

shipping routes for each distributor. The simulation use 

combination of iteration number in 100, 150, 200, and 250 and 

population number in 80, 100, 120, and 140 with three different 

data dynamic demand 20-60, static demand 20-60, and 

dynamic demand 30-40. The result of each simulation shows 

that it has a cost reduction with the best fitness value at 250 

iterations and 140 population and has a more execution time in 

each added iteration or population. 
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